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ABSTRACT

Cancer tumors are very dangers diseases which killed many patients in short time.

There are many types of cancer tumors such as skin tumors, brain tumor, etc. Glioblas-

tomas are one famous form of the cancer tumors. They have been considered one of

the most malignant primary brain tumors. The highly aggressive growth and invasion

are known characterized features of Glioblastomas. Another danger feature of this

type of cancers is the ability to kill the patient within approximately one year even

after extensive surgery radiotherapy and chemotherapy [1, 2,3]. In this thesis we have

studied the advantages of using mathematical models in medical application. In the

first part, the well-known mathematical model by Meaney [2] for obtaining the best

conditions in cancer treatments has been introduced and studied in details. The model

is specified for use in case of brain tumor (Glioblastomas) and radiation treatments

(one-step). So, we have extended the range of calculated values of treatment param-

eters up to 10 values instead of only five values. However, we applied the model on

different cases that differ in the value of initial tumor cell density. We found that the

model is somewhat linearly applicable for different cases. In second part, we have

reported the application of a mathematical model for onestep with multiple fractions

in cancer treatment optimization [2, 5]. In addition to the correction and extending

for some previously calculated, we studied the important role of the initial tumor cell

density on optimization results. We found similar behavior with different values but

not equivalent. In the improved model we presented more physically reasonable new

cases of (one-step) radiation profiles during the two-fractions, three-fractions, ..., i

fractions. By examining cases and expansion on the results by using the partial dif-
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ferential equation models which solved by using computational methods (MATLAB,

we have obtained a great results of reducing the number of cancer cells. Then we

have compared different cases of one-Step i.e. with individual multiple fractions in

mathematical models of cancer treatments optimization.
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Chapter 1

Introduction

1.1 Cancer Background

Cancer is consider a major global issue. Because it represents the second leading cause

of death globally. Recently where it turned out that 7.6 million deaths worldwide

were due to cancer. As reported International Agency for Research on Cancer (IARC)

reported Similarly, 12.7 million new cases are estimated in the year[ 5]. According to

a survey, 63 of cancer-related deaths were reported only from developing countries [5,

6]. This leads that developing countries are at a higher risk of cancer [6]. Cancer is a

very famous and dangerous disease. It attacks the cells and destroys them. Cancer is

characterized by unregulated proliferation and invasion caused by underlying genetic

mutations. Cancer is usually accompanied with many diseases [2,5]. These effects

call the Hallmarks of Cancer [46]. They describe the behaviors typical of cancer cells,

which result in or accompany their problematic growth. The discovery was the oldest

cancer by Egypt and dating back to 3000 BC. (although the word cancer was not

used). This was in a copy of part of an old Egyptian book on shock surgery (called

Edwin Smith Papyrus). It describes 8 tumors or breast sorts that have been removed

by cauterization with a tool called the fire drill. The writing says about the disease,

There is no treatment. While The origin of the word cancer returns to the Greek

physician Hippocrates (460-370 BC,The term Abrota refers in Greek on the crab, most

likely applied to disease because the expectations of the spread of finger is called crab



1.2. Tumor 2

shape. Then the Greek doctor translated later into cancer (28-50 BC), the Latin word

for crab. Galen (130-200 AD), another Greek physician, used the word oncos (Greek

for swelling) to describe tumors. Although crab similarity is similar to the Celsus is

still used to describe malicious tumors, but the term galen is now used as part of the

name of the cancer scientists [9]. Cancer cells are neglecting some physiologic rules

for the cell department and makes them grow in non-regular manner [8,10], cells can

described in their way that grow interconnected unlike cancerous alternaria that grow

independently. However, that cancerous cells do not respond to external grow factors

[8,11]. Additional cells are characterized by the ability to stop in a division in case

the cells are existing [8,12]. Moreover, the regular cell division is a programmer in

an organized manner where it reaches a stage and dies and replaced new. This is in

accordance with a limited efficiency of DNA replication [8,13].

1.2 Tumor

Tumor is a pathological disorder of cell growth, which is characterized by excessive

and abnormal cell proliferation. A tumor is an abnormal mass of tissue that may be

full of solid or liquid. When the growth of tumor cells is limited to the site of origin

and has normal physical properties, they are considered to be benign tumors. When

the cells are abnormal and their growth is not controlled, they are judged as cancer

cells, that is, malignant tumors. Tumors are also called ”NEOPLASM”, judge by

types of tumors, sometimes tumors are not cancerous, these are called benign tumors.

They are made up of cells much like healthy tissue. This tumor stays in one area and

will not spread to healthy tissues and organs. Cancer tumors are also called malignant

tumors. Cancer from these tumors spreads to other parts of the body through the blood

and lymphatic system. When cancer spreads, it is called metastasis. Cancer cells pass

through the blood or lymphatic system from [14].
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1.3 Cancer Tumors Disease

Cancer is a disease in which some of the bodys cells grow uncontrollably and spread

to other parts of the body. Cancer can start almost anywhere in the human body. Nor-

mally, human cells grow and multiply (through a process called cell division) to form

new cells as the body needs them. When cells grow old or become damaged, they die,

and new cells take their place.

Sometimes this orderly process breaks down, and abnormal or damaged cells grow

and multiply when they should not. These cells may form tumors, which are lumps of

tissue. Tumors can be cancerous or not cancerous (benign). Cancerous tumors spread

into, or invade, nearby tissues and can travel to distant places in the body to form new

tumors (a process called metastasis). Cancerous tumors may also be called malignant

tumors. Many cancers form solid tumors, but cancers of the blood, such as leukemias,

generally do not. Benign tumors do not spread into, or invade, nearby tissues. When

removed, benign tumors usually do not grow back, whereas cancerous tumors some-

times do.

Benign tumors can sometimes be quite large, however. Some can cause serious symp-

toms or be life threatening, such as benign tumors in the brain. The cancers are classi-

fied in two ways, first way, classification of cancers according to type of cells and site

of origin:

1. Carcinoma: the most common type of cancer, which originates from the epithe-

lial layer of cells that form the lining of external parts of the body or the internal

linings of organs within the body.

2. Sarcoma: These cancers originate in connective and supporting tissues includ-

ing bones, muscles, cartilage, fats and blood vessels.

3. Leukemia: These cancers affect the bone marrow, which is the site for blood

cell production.

4. Lymphoma: These cancers begin in the lymphocytes (B lymphocytes and T

lymphocytes).
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5. Germ cell tumors: Germ cell tumors are a type of tumor that begins in the cells

that give rise to sperm or eggs.

6. Neuroendocrine tumor: Neuroendocrine tumors form from cells that release

hormones into the blood in response to a signal from the nervous system.

7. Carcinoid tumor: Carcinoid tumors are a type of neuroendocrine tumor. They

are slow-growing tumors that are usually found in the gastrointestinal system

(most often in the rectum and small intestine).

Second way, classification of cancers according to region or organ they started,

Leukemia, Brain Tumor, Spinal Tumor, Liver Cancer, Lung Cancer, Melanoma, Non-

Hodgkin Lymphoma, Pancreatic, Cancer, Prostate Cancer, Thyroid Cancer, Bladder

Cancer, Breast Cancer, Colon and Rectal Cancer, Endometrial Cancer and Kidney

Cancer.

Brain Tumors: A brain tumor, known as an intracranial tumor, is an abnormal

mass of tissue in which cells grow and multiply uncontrollably, seemingly unchecked

by the mechanisms that control normal cells. More than 150 different brain tumors

have been documented, but the two main groups of brain tumors are termed primary

and metastatic.

Primary brain tumors include tumors that originate from the tissues of the brain

or the brain’s immediate surroundings. Primary tumors are categorized as glial (com-

posed of glial cells) or non-glial (developed on or in the structures of the brain, includ-

ing nerves, blood vessels and glands) and benign or malignant.

Metastatic brain tumors include tumors that arise elsewhere in the body (such

as the breast or lungs) and migrate to the brain, usually through the bloodstream.

Metastatic tumors are considered cancer and are malignant.
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1.4 Cancer Treatment Methods

1.4.1 Surgery Therapy

Is a tool to prevent or reduce the spread of disease and remove cancer from the body.

It is one of the most important traditional treatments as it assures least damage to the

surrounding tissues as compared to chemotherapy and radiotherapy after anesthesia

was invented in 1846, surgeons bilroth, handley and halsted led cancer operations by

removing entire tumor together with lymph nodes. Later Paget a surgeon reported

that cancer cells were spread from primary tumor to other places through the blood

stream (metastasis). Understanding the mechanism(s) of cancer spreading became a

key element in recognizing the limitations of cancer surgery. Using miniature video

cameras and endoscopy, surgeons can remove colon, esophagus and bladder tumors

through tubes. Recently, less invasive ways of destroying tumors without removing

them are being studied including liquid nitrogen spray to freeze and kill cancer cells

(cryosurgery). Lasers also can beused to cut the tumor tissue of cervix, larynx, liver,

rectum, skin and other organs [15, 16].

1.4.2 Radiation Therapy

The discovery of x-rays by German Physicist Wilhelm Conrad Rontgen in 1895, also

marked their clinical importance in the treatment of cancer and after 3 years later ra-

diation was used for cancer diagnosis and in treatment. In this therapy high doses of

radiation are used to treat cancer by shrinking tumors and to kill cancer cells. The ad-

verse effect of radiation therapy is that it also hits normal cells lying in the peripheries

of the main tumorous mass [8,17, 18].

1.4.3 Chemotherapy

Chemotherapy is the use chemicals to treat cancer by killing cancer cells and also

by shrink tumors but have severe side effects. Because that chemotherapeutic drugs
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also target normal cells, which could result in a variety of side effects depending on

the dosage such as hair loss, nausea, fatigue, vomiting, etc. As a result of vigor-

ous chemotherapy treatment, patients become immunocompetence. This can result in

complicated infections and consequently death [8,19].

1.4.4 Immunotherapy and Hormone therapy

Immunotherapy is the treatment of diseases on how to address the immune system

by medicine or by other treatments [??]. While hormone therapy is the treatment of

cancer by using powers similar to hormones such as lymphoma, leukemias [8,20].

1.5 Radiation Therapy Advantage and Disadvantage

Radiation therapy : is one the medical ways which used for cancer treatment. This

method is using a dose of ionizing radiation to control tumor (malignant cells) with the

optimal treatment of cancer cells and non- damage the surrounding plummeting. The

general use of radiation in treatment of tumors has been marked after the discovery of

X-rays by German physicist Wilhelm Conrod Rontgen in 1895. The application of X-

rays in diagnostic and treatments highlights their clinical importance in the treatment

of cancer. Just 3 years later, the radiation has a rang wide of medical applications

specially in cancer therapy. However, a therapy high doses of radiation are used to treat

cancer tumors by shrinking tumors and to kill cancer cells. Sadly, the radiation method

has some important side effects. During the application of radiation doses on tumor

area, the radiation hits normal cells that lying in the peripheries of the main tumorous

mass. The biological mechanism for radiation therapy is: radiation damaging the DNA

of human cells and destroys their ability to reproduce. Both normal and cancer cells

can be affected by radiation, but cancer cells have generally impaired ability to repair

this damage, leading to cell death all tissues have a tolerance level, or maximum dose,

beyond which irreparable damage may occur [8, 21].
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1.5.1 Advantage

The main advantage point of radiation therapy is called ”Targeted accuracy” where the

radiation covering the whole tumor area. This allow the radiation to direct effect with

cancer cells [35, 36, 37]. This resulting in access deep places and treatment without

surgery.

1.5.2 Disadvantage

We can summarized the main disadvantage points of radiation therapy as following:

1. Side effects: the first problem has been observed in radiation therapy is the side

effect where the radiation not only destroyed cancer cells but also it destroyed

the normal cell that received some amount of applied doses. General that normal

cells are located beside/behind the cancer cells.

2. Radiation Dermatitis: this is well known as a common adverse effect of radia-

tion therapy. The radiation dermatitis is making the treatment of different type of

tumors such as breast, prostate, perineal, head and neck malignancies very com-

plicated. It late adverse effects include pigmentation changes, telangiectasias,

etc. [21, 22, 23].

3. Salivary gland inflammation, dry mouth, nausea.

4. Nausea, diarrhea, bone marrow suppression.

5. Dry mouth, difficulty swallowing, jaw stiffness, cataracts, cognitive impairment,

hair loss [21, 23-26].

6. Symptoms of radiation pneumonia, including low-grade fever, congestion, dry

cough, pleuritic chest pain and chest tightness [21, 24- 27].

7. Radiation esophagitis is a common, dose-limiting, early adverse reaction of tho-

racic tumor radiotherapy. Higher radiation dose and concurrent chemotherapy

have a higher incidence [21,28-29].



1.6. Mathematical Modeling in Cancer 8

8. Radiation proctitis is seen in the radiotherapy of anal cancer, rectal cancer, cer-

vical cancer, uterine cancer, bladder cancer, testicular cancer, especially prostate

cancer. Increasing radiation dose and concurrent chemotherapy are risk factors,

as are the inflammatory bowel disease in patients who receive external radiation

from the pelvis oral sulfasalazine (Azulfidine) can effectively prevent [21, 30].

9. Radiation cystitis Acute radiation cystitis, including more severe hemorrhagic

cystitis, is a rare adverse reaction of radiation [21, 31].

10. Sexual dysfunction, including impotence, is common after radiotherapy for prostate

cancer and, to a lesser extent, colorectal malignancies. Erectile dysfunction is

more common in brachytherapy than external beam radiation [21, 32].

1.6 Mathematical Modeling in Cancer

1.6.1 Mathematical Models Basis

Mathematical models are a special form of mathematical equations (differential and

partial equations) which is built to simulate the complex systems such as a dynamics,

statistics, biological systems. It dos that by testing hypotheses and confirming exper-

iments. However, the mathematical model is designed to analyzed, expected results

and understand basics of the mechanical systems [2].

1.6.2 Application of Mathematical Models in Radiation Therapy

Optimization

Mathematical modeling is a powerful tool to test hypotheses, confirm experiments,

and simulate the dynamics of complex systems,mathematical models enjoyed for their

presence in all biological sciences, and the dominant attribute of mathematical models

is in the great impact on clinical practice, as they are widely integrated into medical

imaging technologies (see [33]). The advantage of mathematical models in providing

insight into disease growth, treatment response, and ultimately building the framework
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for precision medicine [34]. Because the cancer is complex disease one practical way

for treatment this type of cancers is the radiation therapy. This is due to the precision

of radiation therapy. Its covering fully the tumor region which allow to direct effect

of radiation on cancer cells [ 4, 35, 36]. But after the use of radiation therapy shows

effects and problems leading collapse of the patients health. Due to the inaccuracy

used for the appropriate dose in terms of half of the diameter, severity, oscilloscope

and tumor size. It is therefore the importance of modeling in solving these problems

during radiation therapy in order to determine the appropriate dose.

1.7 Objectives of the Study

1. To build a new and effective mathematical model for optimization the best con-

ditions of cancer treatments of radiation therapy.

2. To compar our model with previous models and prove the superiority our model.

1.8 Important of Study:

Cancer tumors are very dangers diseases that killed many patients in short time. The

reasons of creation of cancer tumors are many and uncontrollable mostly. The number

of cancer victims are increasing annually. One of the famous therapy method that used

in cancer treatments is called radiation therapy. The most advantage of this method

is the accuracy in covering whole cancer cells by radiations dose. However, the ra-

diation treatment has many disadvantage points such as side effect and non-accurate

intensity value that required for the specific tumor and specific patient. The mathe-

matical models are introducing the solutions to overcome the disadvantage points of

radiation therapy. It control and produce the exact optimize values of intensity, radius

and all other variables in radiation therapy.
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1.9 Outline of the Thesis

This thesis is divided into five chapters. These chapters contain on three original re-

search works on mathematical oncology published or in submission to scientific jour-

nals. In first chapter we have given background information about cancer in general. In

terms of cancer definition, tumor cancer, cancer tumors desises and cancer treatment

methods. We also introduced the role of radiotherapy for cancer where we showed the

most important advantage of radiation therapy as well as radiotherapy disadvantages

on treatment the cancer. We also reviewed the role and importance of mathematical

modeling in solving problems resulting from the use of radiotherapy. Also we pre-

sented objectives of the study and important of study.

Chapter 2: In this chapter, we have introduced a literature review of some important

previous studies which focused on mathematical models developments in the field of

brain tumors treatments. In addition, we have presented basic equations of well known

mathematical model that used in cancer tumor optimization.

Chapter 3: In this chapter we presented the well-known mathematical model [2] for

obtaining the best conditions in cancer treatments. The model has been introduced

and studied in details. The model is specified for use in case of brain tumor (Glioblas-

tomas) and radiation treatments (one-step), reviewed some important mathematical

models on brain tumor (Glioblastomas). modeling and cancer dynamics, and outlined

some of the important methods which we employ in this thesis.

Chapter 4: We have extended the range of calculated values of treatment parame-

ters up to 10 values instead of only five values. However, we applied the model on

different cases that differ in the value of initial tumor cell density. We found that the

model is somewhat linearly applicable for different cases. In second part, we have

reported the application of a mathematical model for one-step with multiple fractions

in cancer treatment optimization [1, 2]. In addition to the correction and extending

for some previously calculated, we studied the important role of the initial tumor cell

density on optimization results. We found similar behavior with different values but

not equivalent. In the improved model we presented more physically reasonable new
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cases of (one-step) radiation profiles during the two-fractions, three-fractions, ... , i

fractions. By examining cases and expansion on the results by using the partial dif-

ferential equation models which solved by using computational methods (MATLAB,

we have obtained a great results of reducing the number of cancer cells. Then we

have compared different cases of one-Step i.e. with individual multiple fractions in

mathematical models of cancer treatments optimization.

Chapter 5: Contains a general conclusion of the findings in this thesis and sug-

gestions for areas of further study.



12

Chapter 2

Basic Theory and Literature Review

2.1 Literature Review

2.1.1 Introduction

Glioblastomas are one famous form of the cancer tumors. They have been considered

one of the most malignant primary brain tumors. The highly aggressive growth and in-

vasion are known characterized features of Glioblastomas . Another danger feature of

this type of cancers is the ability to kill the patient within approximately one year even

after extensive surgery radiotherapy and chemotherapy [1 - 3]. One practical way for

treatment this type of cancers is the radiation therapy. This is due to the precision of

radiation therapy. Its covering fully the tumor region which allow to direct effect of ra-

diation on cancer cells [35-37]. Many researchers show that, the mathematical models

can be used for a precise modeling, simulation and predication of optimization results

in cancer treatment using Beam Radiation Therapy (XRT). It utilizes both analytical

and computational mathematical methods as well as data from MRI imaging [1, 2, 37

- 39, 46 ]. In addition, a mathematical model can be applied for developing an ana-

lytical method to describe the response to radiotherapy (RT). Model Ribba et al. [40]

developed an ODE model of the response of low-grade glioma to different therapies

with a number of undetermined parameters that can be fit to describe the individual

patients response with a good qualitative agreement [41-44 ]. In our previous paper
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we have successfully studied the capability of the mathematical model in optimization

brain tumor radiation treatment (onestep) [2, 5]. We have corrected some previously

calculated values and extended the range of calculations up to 10 value. In addition,

we studied the dependency of results on the initial tumor cell density and found that

the behavior is similar but not equivalent. Now since the current efforts focus on the

using the radiation therapy treatments. Because of the precision with which it targets

of the tumor region. Leading to longer survival times. In this thesis we present more

physically reasonable new cases of one-step radiation profiles during the 2nd fraction,

3rd fraction,..., ith fraction. By examining cases and expansion on the results by using

the partial differential equation models which solved by using computational methods

(MATLAB). Finally we have compared different cases of one-Step i.e. with individual

multiple fractions in mathematical models of cancer treatments optimization.

2.1.2 Previous Study

Mathematical models play an essential role in the development of knowledge in can-

cer research, where we can use models to understand the behaviour of a biological

phenomenons. Due to its importance in the applications the mathematical models

has attracted the attention of many world class researchers. Mathematical modeling

of tumours and their environment have been studied by many mathematicians. We

mention, here, only those papers that are close to our interest, [47 - 55]. Fisher [37]

was the first whose introduce the optimization of dose distribution in radiotherapy,

and further developed by Brahme [38]. Benzekry et al [47], offered a serial of appli-

cations and experiments for several classical mathematical models for tumor growth.

While a general mathematical approach to dose distribution optimization which al-

lows tumours with different degrees of complexity was offered by Stavrev [51]. The

development of mathematical models that deal with different stages of cancer growth

were tendered in many review articles. For example, The mathematical model for the

proliferation and infiltration of glioma was introduced by Traqui et al. [56]) when tried

to describe the effects of chemotherapy on the spatio-temporal growth of the tumour.

[48], have been developed different radiobiological models to describe experimental
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outcomes and understand how physical parameters of irradiation impact the biological

response of cells and tissues. A comprehensive historical and critical review of linear-

quadratic (LQ) model was discussed [48]. A three dimensional model was offered and

studied by Burgess et al. [ 49 ]. A brief summary of various approaches in modelling

tumour dynamics and radiotherapy can be found in the review by Enderling et al. [50],

Harpold et al [41] have presented a biomathematical proliferation-invasion model of

glioma growth that predicts linear growth of the radius of the tumor and describes

growth rates as velocities of radial expansion. Stavreva et al. [51] applied an extrem-

ization of TCP subject to a constraint on the mean dose. A Mathematical Approach to

Optimizing the Radiation dose Distribution in Heterogeneous Tumours). Alfonso [53]

examined optimization of radiation therapy incorporating normal tissue complication

probability (NTCP) in addition to TCP. Also he addressed the issue of whether an op-

timal radiation distribution can be determined for a Planning Target Volume (PTV) to

be irradiated. Hong and Zhang [54] Construct a three component tumor growth math-

ematical model and discuss its basic application in tumor fractional radiotherapy with

computer simulation.

2.2 Basic Theory

Equation for tumor growth is found mostly in [1, 2, 37, 38, 39, 46 ]

∂n(~x, t)
∂t

= Dn∇
2n(~x, t) + ρn(~x, t)

(
1 −

an(~x, t)
nmax

)
(2.1)

Here, n(~x, t) is the tumour cell density at position ~x = (x1, ..., xd), ∇2 =
∑n
α=1 ∂

2/(∂x2
α) is

the Laplace operator, Dn is the tumor cell diffusivity, ρ is the tumor cell proliferation

rate, and d is the dimensional, so that we focused on the two dimensional i.e. d =

2. Exponential growth corresponds to a = 0. From the equation (2.1) we find that

n(x, t0) is density profile, now we have to apply XRT to this tumor, we presented the

function f (~x, t) which we call the cytotoxic profile. Hence when the action of most

therapeutic interventions is to remove a fraction of existing cells, we have added a
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term −γ f (~x, t) n(~x, t)
(
1 −

(
bn(~x,t)
nmax

))
to the right hand side of equation (2.1) to become:

∂n(~x, t)
∂t

= Dn∇
2n(~x, t) + ρn(~x, t)

(
1 −

an(~x, t)
nmax

)
− γ f (~x, t)n(~x, t)

(
1 −

bn(~x, t)
nmax

)
. (2.2)

Where the parameter γ is a measure of the radiation rate, and we can write as γ =

αD( 1
day ). Thus, during each fraction, the first two terms on the right hand side of

equation (2.2) can be neglected, leading to

∂n(~x, t)
∂t

= −γ f (~x, t)n(~x, t)
(
1 −

bn(~x, t)
nmax

)
. (2.3)

For the exponential case (b = 0), the equation (2.3) becomes,

∂n(~x, t)
∂t

= −γ f (~x, t)n(~x, t), (2.4)

or
∂n(~x, t)
n(~x, t)

= −γ f (~x, t)∂t. (2.5)

In the logistic case (b = 1) Equation (2.3) becomes,

∂n(~x, t)
∂t

= −γ f (~x, t)n(~x, t)
(
1 −

bn(~x, t)
nmax

)
, (2.6)

implies to
∂n(~x, t)

n(~x, t)
(
1 − bn(~x,t)

nmax

) = −γ f (~x, t)∂t. (2.7)

By integrating Equation (2.5) which (now ordinary) differential equation in the interval

[t0, t0 + ∆t] we get: ∫ t0+∆t

t0
∂n(~x,t)
n(~x,t) =

∫ t0+∆t

t0
−γ f (~x, t)∂t

=⇒ [ln |n(~x, t)|]|t0+∆t
t0 = −γ f (~x, t)(t0 + ∆t − t0)

=⇒ n(~x, t0 + ∆t) = n(~x, t0)e−γ f (~x,t0)∆t.

(2.8)

Now for the logistic growth, i.e. in case (b = 1), integrating Equation (2.6) in the

interval [t0, t0 + ∆t] we get:∫ t0+∆t

t0
∂n(~x,t)

n(~x,t)[1− bn(~x,t)
nmax

]
=

∫ t0+∆t

t0
−γ f (~x, t)∂t (2.9)

Using partial fraction:

A
n(~x,t) + B

1− n(~x,t)
nmax

= 1
n(~x,t)(1− n(~x,t)

nmax)
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A − An(~x,t)
nmax

+ Bn(~x, t) = 1

So A = 1 and B = 1
nmax

. Then

∫ t0+∆t

t0
∂n(~x,t)
n(~x,t) + (−1)

∫ t0+∆t

t0
(−1)

( ∂n(~x,t)
nmax

)

1− n(~x,t)
nmax

=
∫ t0+∆t

t0
−γ f (~x, t)∂t

⇒ ln n(~x, t)|t0+∆t
t0 − ln (1 − n(~x,t)

nmax
)|t0+∆t

t0 = −γ f (~x, t)|t0+∆t
t0

(2.10)

ln
n(~x, t0 + ∆t)

n(~x, t0)
− ln

( nmax−n(~x,t0+∆t)
nmax

)
nmax−n(~x,t0)

nmax

= −γ f (~x, t0)∆t

ln[
n(~x, t0 + ∆t)

n(~x, t0)
∗

nmax − n(~x, t0)
(nmax − n(~x, t0 + ∆t)

] = −γ f (~x, t0)∆t

or

n(~x, t0 + ∆t)
n(~x, t0)

∗
nmax − n(~x, t0)

(nmax − n(~x, t0 + ∆t)
= e−γ f (~x,t0)∆t

or equivalently,

n(~x, t0 + ∆t)
nmax − n(~x, t0 + ∆t)

=
n(~x, t0)e−γ f (~x,t0)∆t

(nmax − n(~x, t0)

From this we get

nmax − n(~x, t0 + ∆t)
n(~x, t0 + ∆t)

=
(nmax − n(~x, t0)

n(~x, t0)e−γ f (~x,t0)∆t

or

nmax

n(~x, t0 + ∆t)
− 1 =

(nmax − n(~x, t0)
n(~x, t0)e−γ f (~x,t0)∆t

Therefore, the required solution is

n(~x, t0 + ∆t) = nmax

1+
nmax−n(~x,t0)

n(~x,t0) eγ f (~x,t0)∆t (2.11)

Now from the first and second fractions of XRT, we present a simple upper bounded

for f (~x, t) which adhere to patient safety standards, We write this constraint as

0 ≤ f (~x, t) ≤ C f or some C. (2.12)
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Where C is dose limiting parameter. The final constraint on f (~x, t) is limits the total

dose received by the patent, This constraint is mathematically represented by

γ

∫
dd~xdt f (~x, t) ≤ F, (2.13)

where the integral is over the inter treatment length. The goal now is to determine

the function f (~x, t) that minimizes the total number N(T ), obtained by integrating the

tumor cell density as

N(T ) =

∫
dd~xn(~x,T ). (2.14)

where N(T ) is the number of cells surviving by the treatment.

2.2.1 Optimal Profile with one Fraction of Exponential Death:

In this section, we will take the case of exponential cytotoxic action. We represent

the first constraint in Equation (2.12) with a Lagrange multiplier λ, which requires

extremizing, [2]

Ñ =

∫
dd~x n(~x, t0)e− f (~x,t0) + λ

(∫
dd~x ( f (~x, t0) − F

)
, (2.15)

where ∆t = γ = 1, for convenience, solving the resulting Euler Lagrange Equation for

f (x, t), we find the optimal profile by differentiation (2.15) with respect to f as

0 =
∫

dd~x n(~x, t0)e− f (~x,t0)(∂ f ) + λ
∫

dd~x f (~x, t0)(∂ f ),

0 =
∫

dd~x
(
n(~x, t0)e− f (~x,t0)(∂ f ) + λ(∂ f )

)
=⇒ (−n(~x, t0)e− f (~x,t0) + λ)(∂ f ) = 0

=⇒ n(~x, t0)e− f (~x,t0) = λ

=⇒ − f (~x, t0) = ln
(

λ
n(~x,t0)

)
=⇒ f (~x, t0) = ln

(
n(~x,t0)
λ

)
,



2.2. Basic Theory 18

=⇒ f (~x, t0) = ln
(
n(~x, t0)
λ

)
, (2.16)

With λ chosen such that (2.13) is satisfied. Note that the above result is indepen-

dent of parameters ρ and Dn and since the cytotoxic profile in Equation (2.16) is not

guaranteed to satisfy the constraint of 0 ≤ f (x, t) ≤ C. In particular, it leads to non-

physical negative values when n(~x, t) < λ. For better understanding of this result, we

consider the simple case of a Gaussian profile arising from radially of a single cell in

exponential growth. Thus the exponential growth for time t0 leads to the cell density

profile:

n(r, t0) = n0e
−r2

2s2 , (2.17)

where r is the radial distance from the initial cell (tumor center). The width of the

Gaussian profile is s =
√

2Dnt0 while n0 = eρt0

(2πs2)
d
2

is the cell density at its center.

Equation (2.16) at cutting off the negative profile of the parabola leads to the semi-

circular profile

f (~x, t0) = f1(r) = ln(
n0

λ
) −

r2

2s2 =

 fm(1 − r2

r2
m

) i f r ≤ rm

0 i f r ≥ rm

(2.18)

where fm = ln n0
λ

and rm = s
√

2 fm. The total radiation dose in this fraction is given by

F =

∫
dd x f1(r) =

2kd

d(d + 2)
fmrd

m (2.19)

Where Kd is the d-dimensional solid angle with K2 = 2π and K3 = 4π. Now since

F = (2kd)/(d(d + 2)) fmrd
m , using fm = (r2

m)/(2s2) from equation (2.19) we get

F =
2kd

d(d + 2)
rd

m(
r2

m

2s2 ) (2.20)

Solving the last equation for rm, we get

rm =

(
d(d + 2)

kd

) 1
d+2

F
1

d+2 s
2

d+2 , (2.21)

where rm is optimal radius of the semicircular, while its maximal intensity can be

rewritten as

fm =
1
2

(
d(d + 2)

kd

) 2
d+2

F
2

d+2 s
−2(d+1)

d+2 , (2.22)

since r2
m =

(
d(d+2)

kd

) 2
d+2 F

2
d+2 s

4
d+2 , and fm =

r2
m

2s2
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Chapter 3

Models and Methodology

3.1 Review of Published Work [2]

In 2019, Meaney studied the spatial optimization for radiation therapy of brain tu-

mours through the one-step and two-step radiation profiles as following:

3.1.1 One- Step, One-Fraction

The simplest step−function case of XRT (External-Beam Radiation Therapy) involves

a uniform beam of radius r1 and strength f1 applied for a duration ∆t at time t0, i.e.

f (r, t) =

 f1 , 0 ≤ r ≤ r1

0 , otherwise.
(3.1)

(see Figure 3.1, (a)). The goal is minimize N(t0 + ∆t) = 2π
∫

rn(r, t0 + ∆t)dr subject to

a constrain F′ = F
πγ∆t = r2

1 f1. Approximating the partial differential equation (PDE) as

an ordinary differential equations (ODE) as before, the tumor cell density distribution

immediately after the fraction as

n(r, t0 + ∆t) =

 n(r, t0)e− f1γ∆t 0 ≤ r ≤ r1,

n(r, t0) , r1 < r < R.
(3.2)
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3.1.2 Two-Step, One-Fraction

Two-step with one-fraction where f2 give different dose to the outer region of the

tumor, where the radiation function given by.

f (r, t0 ≤ t ≤ t0 + ∆t) =


f1 , 0 ≤ r ≤ r1;

f2 , r1 < r < r2;

0 , r2 < r < R.

(3.3)

Figure 3.1 (b), illustrates the model. The goal is minimize

N(t0 + ∆t) = 2π
∫

[rn(r, t0 + ∆t)]dr,

subject to a constrain F′ = F
πγ∆t = r2

1 f1. The tumour cell density distribution immedi-

ately after the fraction is obtained as

n(r, t0 + ∆t) =


n(r, t0)e− f1γ∆t , 0 ≤ r ≤ r1;

n(r, t0)e− f2γ∆t , r1 ≤ r ≤ r2;

n(r, t0) r2 < r < R.

(3.4)

3.1.3 Two-Step, Two-Fraction

For case two-step with two separate fractions, also different dose are given for each

(see Figure 3.1 (c)).

f (r1, t∗0) =


f11 , 0 ≤ r ≤ r11,

f21 , r11 < r < r21,

0 , otherwise,

and f (r, t∗1) =


f12 , 0 ≤ r ≤ r12,

f22 , r12 < r < r22,

0 , otherwise,

(3.5)

where t∗0 ∈ [t0, t0 + ∆t] and t∗1 ∈ [t0 + ∆t + τ, t0 + 2∆t + τ], and τ indicate the interval

between the two fractions. we further assume that the time interval τ between the

fractions is small enough to neglect spatial migrations described by the diffusion term.

If so, the density profile simply grows exponentially, by a factor eρτ without changing

its spatial form, and immediately before the second fraction is given by

n(r, t0 + ∆t + τ) =


n(r, t0)e− f11γ∆t 0 ≤ r ≤ r11

n(r, t0)e− f21γ∆t r11 ≤ r ≤ r21

n(r, t0) r21 < r < R

(3.6)



3.1. Review of Published Work [2] 21

The density profile immediately after application of the second fraction is then given

by:

n(r, t0 + 2∆t + τ) =


n(r, t0 + ∆t + τ)e− f12γ∆t 0 ≤ r ≤ r12

n(r, t0 + ∆t + τ)e− f22γ∆t r12 ≤ r ≤ r22

n(r, t0 + ∆t + τ) r22 < r < R

(3.7)

Figure 3.1: Model 1

we can observe the effect of previous model on first stage and second stage of the

cancers as flowing:

1. The previous first model one-step, one-fraction expose the tumor to radiation

profile which is suitable for1st stage.

2. The second model two-step, one-fraction extended the area of exposed tumor

with additional hole radiation profile in the outer side beyond first radiation

profile limit which is suitable for 2nd stage. i.e. as in the first model, the same

area received same amount of radiation without any further modification.

3. In the third model the similar technique that used in second model has been

repeated with different profiles only.

4. The cell density distribution mostly is not regular over surface, but it follows in

somewhat the Gaussian distribution.
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5. The radiation profile has also Gaussian distribution which make the first model

is suitable of tumor treatment in 1st stage where the maximum power in the

beam center that applied on the maximum cell density which is in the tumor

center. However, these advantage no more applicable in the second and third

models.

6. In second model the area close to r1 is receiving low intensity of radiation, never

the less it may from a part from proliferation area.

3.2 The Improved Models

In our model we have work on the fact that, the amount of applied radiation in treat-

ment should be used in higher intensity over the central of tumor cells more than outer

tumor cells even in more distribution of radial profile. We have started with introduced

the one-step, two fractions model. In this model the two radiation profile used in one

step simultaneously. First fraction radial started from 0 to r1 while second fraction

started from 0 to r2 where r2 larger than r1. Therefore, the second fraction is again

covering first area that covered by first fraction and increased the exposer area beyond

r1. The resulting the first area 0 to r1 which represent the central area of tumor will be

under exposure to the radiation more than that of outer limit of tumor, this will reduce

the tumor cells rabidly. We have extended our model to one-step with individual two

fractions, 3- fractions, ... , n-fractions (see Figure 3.4). Accordingly,tumor cancers

have two distingue stages

3.2.1 First Stage ( Primary Tumors)

In this stage, the tumor cells are existing in specific node or small area. They did not

diffuse out. The maximum cells density are in the center area of the tumor as shown

in Figure (3.2), [6, 58].
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Figure 3.2: Simulation of primary tumor cells density

3.2.2 Second Stage (Metastatic Tumors)

In this stage, three main regions are dividing the whole tumor volume which called

proliferative, hypoxic and necrotic zones. The adequate nutrients are available for

all cells in the proliferative zone. Therefore, the maximum rate of cells growth is

in proliferative zone. The nutrients and oxygen are supplying the cells growth even

in the tumor center, but, due to the increment in the cells size in the center which

leads to shortage the delivery of nutrients, the cells are stop growth then finally die

and consisting the necrotic core as shown in Figure (3.3), [6, 58]. In other words,

in second stage the most central cancer cells are death while the proliferation area is

the outer ring of cancer volume. Therefor we focused in our model on the applying

the radiation in more intensity on the proliferation area. However, we can not define

exactly the bound limit of this area but we surly know that it is in outer ring.
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Figure 3.3: Necrotic zones(black), hypoxic(red), proliferative(blue)

In this model we have studied the application of 2, 3, ..., n−fractions of radiation

with one-step. As shown previously, to describe the one fraction we need to introduce

two variables r1, f1, but in describing two fractions we need four variables r1, f1, r2, f2.

Therefore, we can write f (r, t) during separate fractions as

f (r, t) =

 f1 , 0 ≤ r ≤ r1

0 , otherwise
and f (r, t) =

 f2 , 0 ≤ r ≤ r2

0 , otherwise.
(3.8)
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Figure 3.4: Model 2
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Chapter 4

Results and Discussions

4.1 Correction and Extension to a Pre-Existing Model

In first part of this chapter, we will start by correcting some prior calculations, then

extend the pre-existing model, and then look at how the initial tumor cell density

affects the optimization outcomes. We have extended the range of calculated values of

treatment parameters up to 10 values instead of only five values. However, we applied

the model on different cases that differ in the value of initial tumor cell density. We

found that the model is somewhat linearly applicable for different cases. In second

part, we have build a new mathematical model in cancer treatment optimization.

4.1.1 One-Step Radial and Profile Relations:

The calculated values of final tumor cell density were calculated in all three cases of

initial tumor cell density. It is presented in table 4.1. The terms (Nt,Nt1 and Nt2) are

assigned to the calculated remaining final tumor cell density that count initial tumor

cells density 1 × 107, 5 × 106 and 2 × 107, respectively [2]. In other words, we have

chosen the half and double values of Nt. Also, we have calculated the number of tumor

cells at t0 for the three cases. We assigned them as (n0, n01 and n02) respectively. It’s

very clear that the radiation optimization values of radiation radius r1 and profile f1

do not depend on Nt. However, we have corrected the first two values of r1, f1 and n0
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published in reference [2]. In addition, we extend the calculated values of them up to

ten values.

Table 4.1: Optimization values in one-step fraction

s r1 f1 n0 ∗ e6 Nt ∗ e6 n01 ∗ e5 Nt1 ∗ e6 n02 ∗ e6 Nt2 ∗ e7

1 2.14 5.45 1.5915 1.9204 7.9577 0.9602 3.1831 0.3841

2 3.02 2.72 0.3979 5.3490 1.9894 2.6745 0.7958 1.0698

3 3.707 1.81 0.1768 7.1475 0.8842 3.5737 0.3537 1.4295

4 4.281 1.36 0.0995 8.0984 0.4974 4.0492 0.1989 1.6197

5 4.786 1.091 0.0637 8.6486 0.3183 4.3243 0.1273 1.7297

6 5.24 0.909 0.0442 8.9924 0.2210 4.4962 0.0884 1.7985

7 5.66 0.779 0.0325 9.2207 0.1624 4.6104 0.0650 1.8441

8 6.054 0.68 0.0249 9.3798 0.1243 4.6899 0.0497 1.8760

9 6.422 0.606 0.0196 9.4948 0.0982 4.7474 0.0393 1.8990

10 6.7 0.545 0.0159 9.5807 0.0796 4.7903 0.0318 1.9161

The relation between tumor size (s) with radiation radius (r1) and radiation profile

( f1) are presented in Figure 4.1.

Figure 4.1: a) Relation between r1 and s, b) Relation between f1 and s

Figure 4.1(a) shows the exponential growth between radiation beam radius and

tumor size. While the relation between f1 and s is presented in Figure 4.1 (b). It shows
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that the relation between them is inversely. It means that when the function of energy

distribution of radiation beam is increasing, the tumor size will reduce and vice versa.

The inside small figures show the limitation or threshold of radiation beam profile that

lose its effect with the increase of tumor size. Its noted that the value of tumor size is

more than 22 which breaks the threshold of radiation profile.

4.1.2 Relation between Final Tumor Cell Density with Optimal

Radiation Radius and Profile:

We have studied the variation of the final three values of Nt,Nt1 and Nt2 with radiation

beam radius and profile. It is presented in Figure 4.2. From Figure 4.2 (a) one can

observe that the increase in relation for Nt2 is not equivalent to the decrease in relation

for Nt1. However, we can state that, although the presented mathematical model

shows similar behavior with half and double value of initial tumor density but not

equivalent

Figure 4.2: a) Relation between r1 and N(dt) , b) Relation between f1 and N(dt).

4.1.3 Relation between Final Tumor Cell Density with Tumor Size

and Initial Number of Tumor Cells

Figure 4.3 shows the plotted relation between tumor size and cell tumor n0, n01 and

n02 with Nt,Nt1 and Nt2 at t0 The similar results observed in the previous section
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is supported here. The behavior of model for Nt,Nt1 and Nt2 is similar either with

tumor size s or cell tumor (n0, n01 and n02) at t0 but not equivalent.

Figure 4.3: a) Relation between s and N(dt) b) Relation between n0 and N(dt).

4.2 The Improved Models

We start with one-step with one- fraction that assumed by [2], the simplest step−function

case of XRT in values a uniform beam of radius r1 and strength f1 applied for a dura-

tion ∆t at time t0, i.e.

f (x, t) =

 f1 0 ≤ r ≤ r1

0 otherwise.
(4.1)

The goal is to minimize N(t0 + ∆t) = 2π
∫

r n(r, t0 + ∆t)dr) , subject to a constrain

F′ = F
π∆tγ = r2

1 f1. Approximating the partial differential equation (PDE) as an ordinary

differential (ODE) as before, the tumor cell density distribution immediately after the

function is obtained as

n(r, t0 + ∆t) =

 n(r, t0)e− f1γ∆t 0 ≤ r ≤ r1

n(r, t0) r1 < r < R
(4.2)

Integrating this result gives total number of cells as:

n(r, t0 + ∆t) =
∫ ∫

n(r, t0 + ∆t)dA

= 2π[e− f1γ∆tn0

∫ r1

0
re−r2/2s2dr + n0

∫
R

r1
re−r2/2s2

dr]

= 2πn0s2[e− f1γ∆t(1 − e−r2/2s2
) + e−r2/2s2

− e−R2/2s2
]

(4.3)
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The constraint on the total beam flux can be imposed through a Lagrange multiplier λ

create an augmented N,

N = 2πn0s2[e− f1γ∆t(1 − e−r2
1/2s2

) + e−r2
1/2s2
− e−R2/2s2

] − λ( f1r2
1 − F) (4.4)

Extremizing with respect to r1, f1 and λ, and after eliminating f1 and λ, we arrive at

the following expression for r1:

0 = (e
F′γ∆t

r2
1 + ( r4

1
2F′γ∆ts2 − 1)e

−r2
1

2s2 −
F′γ∆t

r2
1 − ( r4

1
2F′γ∆s2 )e

−r2
1

2s2 (4.5)

Values of r1 that satisfy Eq. (4.5) can be used to find a corresponding f1, together

specifying the optimal N(r1; f1). Table 4.2 shows an overview of the parameter values

utilized in computations, are the same as those utilized by [2].

Table 4.2: parameters used in the various calculations

Parameter S ymbol unit

Initial Total Cell Number N 107 , 5 × 106, 2 × 107 (cells)

Radiation effect Parameter γ 60 (1/day)

The duration of radiation ∆t 0.007 (days)

F′ 25 (mm2)

4.2.1 One-Step with Individual 2−fractions

We have studied the application of two-fractions of radiation with one-step. As shown

previously, to describe the one fraction we need to introduce two variables r1, f1, but in

describing two fractions we need four variables r1, f1, r2, f2. Therefore, we can write

f (r, t) during separate fractions as

f (r, t∗0) =

 f1 , 0 ≤ r ≤ r1

0 , otherwise,
(4.6)

and

f (r, t∗1) =

 f2 , 0 ≤ r ≤ r2

0 , otherwise.
(4.7)
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To minimize N(t0 + ∆t) = 2π
∫

rn(r, t0 + ∆t)dr, where the fractions constrained

individually, such that F′ = F/π∆tγ = r2
1 f1 and F′ = F/π∆tγ = r2

2 f2. f (r, t0) is

the same as one-step with one-fraction which has been studied previously [2], then the

values related to f (r, t0) does not change. We consider τ the time between the fractions

where the τ is small enough to neglect spatial migrations described by the diffusion

term. Thus, the density profile simply grows exponentially, by a factor eρτ,

n1(r, t0 + ∆t) =

 n(r, t0)eρτe− f1γ∆t , 0 ≤ r ≤ r1

n(r, t0)eρτ , r1 < r < R,
(4.8)

where n(r, t0) = n0e−
r2

2s2 . Thus

n1(r, t0 + ∆t) =

 n0e−r2/2s2
eρτe− f1γ∆t , 0 ≤ r ≤ r1

n0e−r2/2s2
eρτ , r1 < r < R.

(4.9)

But after application of the second fraction its given by:

n2(r, t0 + 2∆t + τ) =

 n1(r, t0 + ∆t)e− f2γ∆t , 0 ≤ r ≤ r2

n1(r, t0 + ∆t) , r2 < r < R
(4.10)

The factor of e− f1γ∆t is specifying the effect of one-step with 1− f raction that is before

second fraction immediately. It is only have effect on the range 0 ≤ r ≤ r1. So during

the second fraction we should multiply its effect, e− f2γ∆t by the effect of first fraction

as following:

n2 =

 n1e− f2γ∆t , 0 ≤ r ≤ r2

n1 , r2 < r < R,
(4.11)

which leads to

n2 =

 n0e−r2/2s2
eρτe−γ[ f1+ f2]∆t , 0 ≤ r ≤ r2

n0e−r2/2s2
eρτ , r2 < r < R.

(4.12)

Integrating this result gives total number of cells as:

N(r, t0 + ∆t) =
∫ ∫

eρτn(r, t0 + ∆t)dA

= 2πeρτ
[
e−γ[ f1+ f2]∆tn0

∫ r2

0
re−r2/2s2

dr + n0

∫
R

r2
re−r2/2s2

dr
]

= 2πeρτn0s2
[
e−γ[ f1+ f2]∆t(1 − e−r2

2/2s2
) + e−r2

2/2s2
− e−R2/2s2

]
,

(4.13)
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where τ is very small, it can be neglected (eρτ = 1) then

N(t0 + ∆t) = 2πn0s2
(
e−γ[ f1+ f2]∆t(1 − e−r2

2/2s2
) + e−r2

2/2s2
− e−R2/2s2

)
(4.14)

The constraint on the total beam flux can be imposed through a Lagrange multiplier λ

create an augmented N,

N(t0 + ∆t) = 2πn0s2
(
e−γ[ f1+ f2]∆t(1 − e−r2

2/2s2
) + e−r2

2/2s2
− e−R2/2s2

)
−λ( f2r2

2 − F′)
(4.15)

Extremizing with respect to r2, f2 and λ, we get

0 = 2πn0r2e−r2
2/2s2

(e−γ[ f1+ f2]∆t − 1) − 2λ f2r2

0 = 2πn0s2γ∆te−γ[ f1+ f2]∆t(e−r2
2/2s2
− 1) − λr2

2

0 = f2r2
2 − F′

By eliminating f2 and λ, from the above equations we arrive at the following expres-

sion for r2 :

0 = e
−
γ[r2

2 f1+F′]∆t

r2
2

[
1 +

(
r4

2
2F′γ∆ts2 − 1

)
e
−r2

2
2s2

]
− ( r4

2
2F′γ∆ts2 )e

−r2
2

2s2 (4.16)

We can easily note that at t0 , i.e. ∆t = 0, Equation 4.14 becomes

N = 2πn0s2 (4.17)

which shows the relation between initial number of tumor cells N0 and cell density n0

at center

4.2.2 One-Step with Individual 3-Fractions

We consider that one-step case of (XTR) with the three fractions individually consist

a beam of radius r1, r2 and r3 and strength are f1, f2 and f3. The radiation profiles is:

f (r, t∗0) =

 f1 , 0 ≤ r ≤ r1

0 , otherwise,

f (r, t∗1) =

 f2 , 0 ≤ r ≤ r2

0 , otherwise,
and

f (r, t∗2) =

 f3 , 0 ≤ r ≤ r3

0 , otherwise.

(4.18)
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The goal is minimize N(t0 + ∆t) = 2
∫

rn(r, t0 + ∆t)dr, where the fractions con-

strained individually, such that F′ = F/π∆tγ = r2
1 f1 and F′ = F/π∆tγ = r2

2 f2 and

F′ = F/π∆tγ = r2
3 f3. Since f (r, t1) is the same as one-step with 2−fractions, then

f (r, t1) does not change from that for one-step with 2−fractions, we consider the τ the

time between the fraction where the τ is small enough to neglect spatial migrations de-

scribed by the diffusion term. Where the density profile simply grows exponentially,

by a factor eρτ, then second fraction of radiation is given by

n2(r, t0 + 2∆t + τ) =

 n1(r, t0 + ∆t)e− f2γ∆t 0 ≤ r ≤ r2

n1(r, t0 + ∆t) r2 < r < R
(4.19)

but after application of the third fraction is given by:

n3(r, t0 + 3∆t + 2τ) =

 n2(r, t0 + 2∆t + τ)e− f3γ∆t 0 ≤ r ≤ r3

n2(r, t0 + 2∆t + τ) r3 < r < R
(4.20)

The factor of e−γ[ f1+ f2]t is specifying the effect of One-step with One and two fractions

that are before third fraction immediately. It is only have effect on the range 0 ≤ r ≤

r1, r2, r3, so it will be multiply in the function in this rang only.

n3 =

 n2e− f3γ∆t 0 ≤ r ≤ r3

n2 r3 < r < R
(4.21)

Which implies to

n3 =

 n0e−r2/2s2
eρτe−γ[ f1+ f2+ f3]∆t 0 ≤ r ≤ r3

n0e−r2/2s2
eρτ r3 < r < R

(4.22)

integrating this result gives total number of cells as:

N(r, t0 + ∆t) =
∫ ∫

eρτn(r, t0 + ∆t)dA

= 2πeρτ[e−γ[ f1+ f2+ f3]∆tn0

∫ r3

0
re−r2/2s2dr + n0

∫
R

r3
re−r2/2s2

dr]

= 2πn0s2eρτ[e−γ[ f1+ f2+ f3]∆t(1 − e−r2
3/2s2

) + e−r2
3/2s2
− e−R2/2s2

]

(4.23)

Where τ is very small it can be neglected (eρτ = 1) then

N(r, t0 + ∆t) = 2πn0s2[e−γ[ f1+ f2+ f3]∆t(1 − e−r2
3/2s2

) + e−r2
3/2s2
− e−R2/2s2

] (4.24)
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The constraint on the total beam flux can be imposed through a Lagrange multiplier λ

create an augmented N,

N(r, t0 + ∆t) = 2πn0s2[ρτe−γ[ f1+ f2+ f3]∆t(1 − e−r2
3/2s2

) + e−r2
3/2s2
− e−R2/2s2

] − λ( f3r2
3 − F′)

(4.25)

Extremizing with respect to r3, f3 and λ, we get

0 = 2πn0r3e−r2
3/2s2

(e−γ[ f1+ f2+ f 3]∆t − 1) − 2λ f3r3

0 = 2πn0s2γ∆te−γ[ f1+ f2+ f 3]∆t(e−r2
3/2s2
− 1) − λr2

3

0 = f3r2
3 − F′

By eliminating f3 and λ, from the above equations we arrive at the following expres-

sion for r3 :

0 = e
γ[r2

3[ f1+ f2]+F′]∆t

r2
3

(
( r4

3
2F′γ∆s2 − 1)e

−r2
3

2s2 + 1
)
− ( r4

3
2F′γ∆s2 )e

−r2
3

2s2 (4.26)

4.2.3 One-Step with Individual i-Fractions:

In the section for applying i−fractions, describing i−fraction requires introducing i

new variables to parameterize f (r, t), we can write the f (r, t)of i′s separate fractions

as.

f (r, t∗0) =

 f1 , 0 ≤ r ≤ r1

0 , otherwise,

f (r, t∗1) =

 f2 , 0 ≤ r ≤ r2

0 , otherwise,
...

f (x, t∗i−1) =

 fi , 0 ≤ r ≤ ri

0 , otherwise.

(4.27)

since the i′s fractions apply individually, we get F′ = r2
i fi.Density profile immediately

after application ith fraction individually is given by

ni =

 ni−1e− fiγ∆t , 0 ≤ r ≤ ri

ni−1 , ri < r < R,
(4.28)
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which implies to

ni =

 n0e−r2/2s2
eρτe−γ[

∑i
k=1 fk]∆t , 0 ≤ r ≤ ri

n0e−r2/2s2
eρτ , ri < r < R.

(4.29)

integrating this result gives total number of cells as:

N(r, t0 + ∆t) =
∫ ∫

eρτni(r, t0 + ∆t + (i − 1)τ)dA

= 2πeρτ[e−γ[
∑i

k=1 fk]∆tn0

∫ ri

0
re−r2/2s2dr + n0

∫
R

ri
re−r2/2s2

dr]

= 2πn0s2eρτ[e−γ[
∑i

k=1 fk]∆t(1 − e−r2
i /2s2

) + e−r2
i /2s2
− e−R2/2s2

]

(4.30)

Where τ is very small it can be neglected (eρτ = 1) then

N(r, t0 + ∆t) = 2πn0s2[e−γ[
∑i

k=1 fk]∆t(1 − e−r2
i /2s2

) + e−r2
i /2s2
− e−R2/2s2

] (4.31)

The constraint on the total beam flux can be imposed through a Lagrange multiplier λ

create an augmented N,

N(r, t0 + ∆t) = 2πn0s2[ρτe−γ[
∑i

k=1 fk]∆t(1 − e−r2
i /2s2

) + e−r2
i /2s2
− e−R2/2s2

] − λ( fir2
i − F′)

(4.32)

Extremizing with respect to ri, fi and λ, we get

0 = 2πn0rie−r2
i /2s2

(e−γ[
∑i

k=1 fk]∆t − 1) − 2λ firi

0 = 2πn0s2γ∆te−γ[
∑i

k=1 fk]∆t(e−r2
i /2s2
− 1) − λr2

i

0 = fir2
i − F′

By eliminating fi and λ, from the above equations we arrive at the following expression

for ri :

0 = e
γ[r2

i [ f1+ f2+...+ fi−1]+F′]∆t

r2
i

(
(

r4
i

2F′γ∆s2 − 1)e
−r2

i
2s2 + 1

)
− (

r4
i

2F′γ∆s2 )e
−r2

i
2s2

4.2.4 Numerical Discussion for improved Model

4.2.4.1 Optimization the Radiation Profile for One-Step Profile

with 2-Fractions

In the Table 4.3 we have calculated values of N(t + dt) in two cases: 1) One-step,

One-fraction (N1); 2) One-step, two-fractions, N2, where N(t + dt) are the final tumor
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cell number at the end of radiation, s is the tumor size while r1, r2, f1 and f2 are the

two radiuses and strengths of the (one-step, two-fraction), respectively.

Table 4.3: Optimization values in One-step with two-fractions
s n0 r1 f1 r2 f2 N1(1.0e + 006) N2(1.0e + 006)

1 1591549 2.140695 5.455447 3.113118 2.579578 1.9204 0.4182

2 397887.4 3.0274 2.727724 5.339606 0.876842 5.3490 2.4214

3 176838.8 3.707793 1.818482 7.945889 0.395963 7.1475 4.1267

4 99471.84 4.28139 1.363862 10.85839 0.212036 8.0985 5.2804

5 63661.98 4.78674 1.091089 13.96681 0.128158 8.6486 6.0735

6 44209.71 5.243611 0.909241 17.20539 0.084452 8.9924 6.6438

7 32480.6 5.663747 0.77935 20.53785 0.059269 9.2207 7.0714

8 24867.96 6.0548 0.681931 23.94278 0.04361 9.3798 7.4031

9 19648.76 6.422085 0.606161 27.40649 0.033284 9.4948 7.6676

10 15915.49 6.769472 0.545545 30.91958 0.02615 9.5806 7.8833

The listed values in Table 4.3 conform the validity and superiority of our model.

The last columns that contain the total number of remaining tumor cell N1 and N2

show clearly the effective reducing in total number of tumor cells when second fraction

applied with first fraction in the same time. Other parameters show logical sequence

which comfortable with all results. For example, the model suppose that r2 larger than

r1 which is clearly verified in columns 3 and 5. Similar logic for relation between r1

with f1 and r2 with f2 values. However, there is another interesting results about the

decreasing steps of N1 and N2 with size of tumor (s). The table shows the very slow

effect of radiation with increases of tumor size (s). In fact, this behavior is due to the

constraints condition for limiting the total dose received by patient which is reported

in equation (2.13)

4.2.4.2 The Comparison between the Final Tumor Cell Density in

(One-Step ,with One-Fraction ) and (One-Step, with two-

Fractions) :

Figure 4.4 shows the plotted comparison between N(t + dt) in the cases One-step

with One-fraction and One-step with two-fraction. The curves has been plotted for N1
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with r1, f1 and s. similar plotting is done for N2 with r2, f2 and s. The curves in all

graphs in Figure 4.4 shown clearly the advantage for using our proposed model. The

valuable rate of difference between N1 and N2 conforms our model in tumor treatment

optimization.

Figure 4.4: Comparison between the final tumor cell density in onestep with One-

fraction and one-step with two-fraction

4.2.4.3 Optimization the Radiation Profile for One-Step Profile

with 3-Fractions

In the Table 4.4 we have calculated values of N(t + dt) in the case one-step with

3−fraction, where N(t + dt) are the final tumor cell number at the end of radiation.

And s is the tumor size. r1, r2, r3, f1, f2 and f3 are the two radii and strengths of the

one-step 3−fraction. Also in the Table 4.4 we presented the N(t + dt) in the case

One-step One-fraction and one-step with One-fractions for the explain that in the case

one-step with three-fractions response to radiation therapy is better than cases of (one-

step,one-fraction and one-step, two-fractions).
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Table 4.4: Optimization values in one-step with three-fraction

s n0 r1 f1 r2 f2 r3 f3 N1 N2 N3

1.0e + 6 1.0e + 6 1.0e + 6

1 1591549 2.140695 5.455447 3.113118 2.579578 3.521225 2.016288 1.9204 0.4182 0.16676

2 397887.4 3.0274 2.727724 5.339606 0.876842 5.866417 0.726431 5.3490 2.4214 1.7353

3 176838.8 3.707793 1.818482 7.945889 0.395963 8.464817 0.348903 7.1475 4.1267 3.5306

4 99471.84 4.28139 1.363862 10.85839 0.212036 11.32512 0.194919 8.0985 5.2804 4.8486

5 63661.98 4.78674 1.091089 13.96681 0.128158 14.38081 0.120885 8.6486 6.0735 5.7646

6 44209.71 5.243611 0.909241 17.20539 0.084452 17.57601 0.080928 8.9924 6.6438 6.4175

7 32480.6 5.663747 0.77935 20.53785 0.059269 20.87415 0.057375 9.2207 7.0714 6.9006

8 24867.96 6.0548 0.681931 23.94278 0.04361 24.25184 0.042506 9.3798 7.4031 7.2706

9 19648.76 6.422085 0.606161 27.40649 0.033284 27.69362 0.032597 9.4948 7.66767 7.5624

10 15915.49 6.769472 0.545545 30.91958 0.02615 31.18873 0.025701 9.5806 7.8833 7.7981

In similar logic, the listed values in Table 4.4 again conform the validity and supe-

riority of our model. The last three columns that contain the total number of remaining

tumor cell N1,N2 and N3 show more clearly the effective reducing in total number of

tumor cells specially after second and third fraction applied with first fraction in the

same time. Also, in similar resulting to previous model. Other parameters show log-

ical sequence that comfortable with all remaining results. For example, the model

suppose that r3 larger than r2 which is larger than r1, that is clearly verified in columns

3, 5 and 7. The similar logic for relation between r1 with f1 and r2 with f2 and r3 with

f3 values. However, the most interesting results is about the decreasing steps of N2

and N3 with size of tumor (s). The table shows that at high values of S , the values of

N2, almost become very close to N3 values. This is another result controlled by the

constraints condition for limiting the total dose received by patient which is reported

in equation (2.13).
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4.2.4.4 The Comparison between the Final Tumor Cell Density

in the Cases (One-Step with one-Fraction, One-Step with

two-Fractions and One-Step with tree-Fractions)

Figure 4.5 shows the plotted comparison between of N(t + dt) in the cases (one-step

with two-fraction, one-step with one-fraction and one-step with three-fraction) where

the one-step with three-fractions is most effect of XRT.

Figure 4.5: The comparison between the final tumor cell density in the cases one-step

with one-fraction, one-step with two-fractions and one-step with three-fractions
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

We have successfully studied the capability of the mathematical model in optimization

brain tumor radiation treatment. We have corrected some previously calculated values

and extended the range of calculations up to 10 values. In addition, we studied the

dependency of results on the initial tumor cell density and found that the behavior is

similar but not equivalent.

Improved Model: We have successively introduced a new effective mathematical

model for tumor treatment optimization. The obtained results of the total number of

remaining tumor cell N1,N2 and N3 show more clearly the effective reducing in total

number of tumor cells specially after second and third fraction applied with first.

5.2 Recommendations

1. We recommend to extend our study upto 2, 3, ..., n−steps.

2. We recommend to apply our models in real data and real images of tumors that

exposed to radiation therapy at Cancer Center in Sanaa.

3. We recommend our university to adopting such studies in its scientific projects
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and supporting this field.

4. We recommend the ministry of higher education and scientific research with

Cancer Fund to create specific research centers to support the researchers in

field of development mathematical models for optimization factors in cancer

tumor therapy.
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