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ABSTRACT

In this thesis, we have introduced the new spaces of A-difference sequences by means of
the classical sequence spaces of bounded and convergent difference sequences. Further,
we have studied the isomorphic, algebraic and topological properties of our new spaces
with their Schauder bases and inclusion relations. Besides, we have obtained their dual
spaces. Moreover, we have concluded some new results characterizing certain classes
of matrix operators acting on, into and between our spaces. Furthermore, several
important and new results have been obtained and discussed as particular cases of our

main results.



PREFACE

Functional analysis was founded by S. Banach, M. Fréchet, H. Hahn, D. Hilbert, F.
Hausdorff, F. Riesz and others. These names have become synonymous with the tools
of functional analysis as a branch of mathematical analysis including a study of abstract
spaces and their operators and transformations, such as the Fourier transform, which
provides a general framework for finding solutions of various problems in the applied
mathematics and physics. The most general types of these abstract spaces are those
infinite dimensional spaces, and the sequence spaces are the most important spaces of
these types, known as infinite dimensional analysis. Especially in summability theory
which encompasses a variety of fields and has many applications in various subjects. For
instance, in numerical analysis, approximation theory, operator theory and the theory
of differential equations and orthogonal series with their special functions. Thus, many
mathematicians have done a lot of work in this field of sequence spaces and studied
their matrix transformations which have been applied in all other areas of mathematics.
So, we have selected this area for research and study.

In the present thesis, the main contribution is to introduce some new sequence
spaces and study their topological properties, inclusion relations, Schauder bases, dual
spaces and certain classes of matrix operators on these new sequence spaces.

My thesis is divided into five chapters and the main results in the last four chapters
have been published in two research papers as mentioned at the beginning of each

2nd

chapter, and the first paper has been presented in the conference of Albaydha

University (2021). The materials of this exposition are organized as follows:
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Chapter 1 is an introductory chapter to present a short survey on some basic
definitions, notations and preliminary results which are already known in the literature
of the theory of sequence spaces and their matrix transformations with the historical
and theoretical background of this area.

In Chapter 2, we have introduced the new A\-difference sequence spaces of bounded,
convergent and null sequences, and studied their algebraic, topological and isomorphic
properties with constructing their Schauder bases.

Chapter 3 is devoted to establish some interesting inclusion relations between our
new spaces and the classical sequence spaces, and some particular cases of equalities
and strict inclusions will be discussed with important examples.

In Chapter 4, we have deduced the Kothe-Toeplitz duals of our new A-sequence
spaces defined in terms of difference sequences.

Chapter 5 is devoted to characterize the related classes of matrix operators acting
on, into and between our new spaces, and some known or new results will be deduced
as particular cases.

For more utility, we hope for the reader’s familiarity with the basic concepts of
our subject. Thus, for further knowledge in our notions, we refer the reader to [56]
for basic idea of sequences and series, to [17, 34] for elementary concepts of functional
analysis, to [10, 16, 35, 67] for the notions of sequence spaces and to [9, 52] for the
particular sequence spaces of A\-type.

The obtained facts are those remarks, examples, lemmas or theorems, which are
presented throughout this thesis as paragraphs and every paragraph is specified with
triple decimal numbering. The first number indicates the chapter, the second represents

the section, and the third refers to the number of current paragraph. For example, the
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form 3.2.1 refers to the first paragraph (remark, example, lemma or theorem) appearing
in Section 2 of Chapter 3.

At the end of this monograph, we have given an exhaustive list of the relevant
references to the literature presented in this thesis. All results stated without proof
are cited and can be found in the references given before the statements.

Besides, I hope for the reader’s forgiveness if there is any typing mistake which
may appear here or there throughout this simple work. Despite all efforts to make this
thesis free from such errors, there may be some still left.
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Chapter 1
INTRODUCTION




1 INTRODUCTION

The most general types of abstract spaces are those infinite dimensional spaces, and
the sequence spaces are the most important spaces of these types, known as the infinite
dimensional analysis. In this first chapter, we display a historical and theoretical survey
of our field concerning the theory of sequence spaces and their matrix transformations
with a short note on some basic definitions, notations and preliminary results which
are already known in the literature of this field. This introductory chapter is divided
into three sections, the first is devoted to the theoretical background, the second is for
the research methodology and the last is to present some preliminary results which will

be needed in the next chapters.

1.1 Theoretical Background

In this section, we display a historical background for the theory of sequence spaces
and matrix transformations, and we give a short survey on some basic concepts of this

area with certain previous studies.

1.1.1 Historical Survey

In 1828, Abel wrote "the divergent series are the invention of the devil, and it
is shameful to base on them any demonstration whatsoever”. Such was the authority
of Cauchy, Abel and their successors that divergent series were, in Hardy’s words,
‘eradually banished from analysis’ It was not until 1890, when Cesaro published a
paper about the multiplication of series that, according to Hardy, ‘for the first time a

"theory of divergent series” is formulated explicitly’. Indeed, Cesaro’s idea was quickly



picked up and applied fruitfully to Fourier series. Ome of the early successes was
a beautiful theorem of Fejer’s which we state after first giving the simplest form of
Cesaro’s idea [16].

The summability theory has been originated from the attempts made by the math-
ematicians to give limits to the divergent sequences and series. In particular, theory of
sequence spaces and matrix transformations is a significant area of research in summa-
bility theory as a part of functional analysis, and so many mathematicians have done a
lot of work in this field. In fact, the most important methods of summability are given
by infinite matrices and matrix transformations. So, our concern is with those infinite
matrices that map a sequence space into another one. Such matrices arise naturally
from the infinite-dimensions of sequence spaces [10].

The historical roots of interest in matrix transformations was stimulated by special
results in the summability theory which were obtained by E. Cesaro, L. Euler, N.
Norlund, F. Riesz and others. The earliest idea of summability were perhaps contained
in a letter written by Leibnitz to C. Wolf in 1713, the sum of the oscillatory series
1—1+1—--- as given by Leibnitz was in 1880. After that, Frobenius introduced the
method of summability by arithmetic mean which has later been generalized by Cesaro
in 1890 as the (C,«) method of summability [67]. With the emergence of functional
analysis, sequence spaces were studied with greater insight and motivation and the
earliest applications of functional analysis to summability was made by S. Banach, H.
Hahn, S. Mazur, G. Kéthe and O. Toeplitz. In 1911, the celebrated mathematician
Toeplitz determined the necessary and sufficient conditions for an infinite matrix to be
regular, that is, he characterized those conservative matrices that preserve the limits

invariant. In fact, Toeplitz was the first person who studies the summability methods



as a class of operators defined on sequences by infinite matrices [35]. It was followed by
the works done by I. Schur, W. Orlicz, K. Knopp, G. Petersen, H. Nakano, S. Simons,
G. Lorentz, G. Hardy, A. Wilansky, I. Maddox, W. Sargent, C. Lascarides, S. Nanda,
D. Rath, G. Das, Z. Ahmed, B. Kuttner and many others like Russell and Rhoade.

Many years after the Toeplitz’s work, exactly in 1950, Robinson initiated the
study of summability by infinite matrices of linear operators on normed linear spaces
which enabled the workers on summability to extend their results. Also, in 1951,
the famous mathematician K. Zeller introduced the concept of BK spaces® which has
proved its useful in summability theory, especially in the characterizations of matrix
transformations between sequence spaces, and the most important result is that matrix
operators between BK spaces are continuous [36, 38].

But, why we should study matrix operators and transformations between sequence
spaces; why not study the general linear operators? The reason is that, in many
important cases, the most general linear operators acting between sequence spaces are
actually determined by infinite matrices. So, there is no loss of generality in such study.
Moreover, there is often a gain in that specific conditions on the entries of an infinite
matrix which may be easy to verify [16].

The sequence spaces were motivated by problems in Fourier series, power series
and systems of equations with infinitely many variables, and the theory of sequence
spaces and infinite matrices occupies a very prominent position in several branches of
analysis and plays an important role in various fields of Mathematics as a powerful
and pervading tool in almost all these branches with several important applications.

For example, in the structural theory of topological vector spaces, Schauder basis

*The letters B and K stand for Banach and the German word Koordinate which means ‘coordi-
nate’ as in the Zeller’s terminology.



theory and theory of integral and differential equations and special functions (e.g., see
[10, 39, 59, 61, 71]).

Recently, the sequence spaces have been generalized in several directions by many
mathematicians and some of them introduce new sequence spaces and study their
various properties. At the present time, a lot of work have been done by many re-
searchers around the world, like Boos, Rakocevi¢, Malkowsky, Savas, Basar, Altay,
Mursaleen, Noman, Kirigi, Kara and many others, only a few was named (e.g., see
[3, 6, 12, 26, 28, 31, 38, 48, 55, 69, 74]). In particular, the difference sequence spaces
have been studied by many researchers, like Kizmaz, Et, Basar, Karakaya, Polat, Meng
and others (e.g., see [2, 7, 13, 19, 22, 32, 33, 40, 41, 62, 65, 68]).

Finally, the A-sequence spaces have been introduced and studied by Mursaleen
and Noman in 2010 [44, 45, 46, 47] and these spaces are very interesting which have
been taken away by researchers and authors upto so far limits. For instance, they
have introduced the concepts of statistical A-convergence and strong A-convergence by
using the generalized de la Vallée-Poussin mean in 2011 (see Mursaleen and Alotaibi
[42]) and other authors have studied some general difference forms of the A-matrix
and A-sequence spaces (e.g., Sonmez with others in 2012 [62] and Bisgin and others
in 2014 [14]). Also, some of them have introduced the concept of almost convergence
of double sequences in A-sequence spaces (e.g., Ahmad and Ganie in 2013 [1] and Raj
with others in 2015 [57]) and others have introduced the spaces of almost lambda null,
almost lambda convergent and almost lambda bounded sequences (e.g, Yesilkayagil
and Basar in 2015 [73] and Ercan in 2020 [20]). Besides, the A-sequence spaces have
proved their useful in some subjects with various applications in the operator theory,

spectral theory and measure of non-compactness (e.g., see [10, 49, 52, 71, 72]).



1.1.2 Notions and Notations*

Here, we give a short survey on the basic definitions, concepts and notions which
are the elementary tools in the theory of sequence spaces and matrix transformations.
Also, we will define the common notations which are usually used by all authors and
researchers in this area. Thus, our terminologies, as given here, will have the same

meanings throughout this thesis (unless stated otherwise).

1.1.2.1 Scalars and Sequences: Let K be the scalar field (consisting of real or
complex numbers), that is K = R or C, and so our scalars are either real or complex
numbers (according to the case of our spaces). Also, we will use the symbols k& and n
to be positive integers while p,q > 1 are real numbers.

By a "sequence”, we mean an infinite sequence of real or complex terms, and if x =
(w1, 22,23, -+ ) is a real or complex sequence; then we denote it by x = (zy),—, or simply
r = (xp), where xy is called the k-th term of x. Further, we shall use the following
conventions: the first is that any term with a non-positive subscript is assumed to be
nothing (e.g., the terms zy and x_; have no meaning and can be considered to be not
exist). Next, we will frequently use the sequences e = (1,1, 1,...) and e for each k& > 1,
where e;, is the sequence whose only one non-zero term which is 1 in the k-th place for
each k > 1, that is e; = (1,0,0,--+), es = (0,1,0,0,---),--- etc. Also, the absolute
value of a sequence z and its positive power are defined by means of their meanings for
its scalar-terms, that is |z| = (|ag|) and |z|” = (Jzx|") for any real number r > 0. The
last conventions are concerning with some algebraic operations defined on sequences,

namely the coordinate-wise addition, scalar multiplication, product and division. More

precisely, if x and y are sequences and « is a scalar; then x +y = (v £ yi), ax = (axg),

*We refer the reader to [10, 16, 35, 37, 67] for the elementary concepts.



xy = (zyy) and if yi, # 0 for all k; then z/y = (zx/yx) and 1/y = (1/yx).
Together with any sequence x = (zy), there always exist two sequences, namely

the difference sequence A(z) and the sum sequence o(x), where
A(x) = (z1,29 — 21,03 — Ta, -+ ) and o(x) = (w1, 01 + T, 11 + T2 + 3, -+ ).

That is A(z) = (A(zk))32, = (2 — 25-1)52, and o(z) = (ox(2))5, = (35 125)8
which leads us to write their terms as follows:

k
or(x) = ij and A(xg) =z, — x5y with A(zy) =2 (k>1). (1.1.1)
j=1
Also, for any two sequences x,y € w, the difference sequence of their product is the

sequence A(zy) with terms A(zpyr) = @ Y — Tr—1yx—1 for all & which can be obtained

by the following formula:

Alzeye) = wAy) + e Ala) (k> 1). (1.1.2)

1.1.2.2 Boundedness and Convergence: A sequence z = (x) is said to be bounded
if there exists a positive real number M > 0 such that |z;| < M for all £ > 1, that is x
is bounded if and only if sup, |zx| < 0o, where the supremum of |z| is taken over all
positive integers k. Also, the sequence z is said to be convergent if its limit limy_, . xx
exists (in K). That is, there must exist a € K such that limy_,, 25 = a which can be
written as x; — a as k — oo (or briefly xx — a). In particular, by a null sequence,
we mean a convergent sequence which converges to zero, i.e. limy_,o x5 = 0. On other
side, if a sequence z = (zj) is not convergent; then we say that x is divergent which
means that its limit does not exist (in K) [35].

In connection with some kinds of divergence, the real sequences have a special

importance in this study. For instance, if z = (z;) is a real sequence such that



limy 00 2 = 00 (0Or limy_,00 2, = —00); then we say that z diverges to oo (or —o0)
which can be denoted by z; — oo (or z; — —o0) as k — oco. Further, a divergent real
sequence z = (z) is said to be oscillated if neither z;, — oo nor z;, — —oo (as k — o0).
That is, if limy_ o 2x exists, limy_,o 2 = 00 or lim,_, 2 = —o0o; then z is not oscil-
lated. In other words, by an oscillated sequence, we mean a divergent real sequence
which has no a unique limit for all its subsequences (including the limits £o00). For
example, the real sequences ((—1)%), ((—2)*) and (k + k(—1)¥) are oscillated while the

sequences ((—1)*/k), ((=2)* — 3%) and (k? 4+ k(—1)) are not oscillated [52].

1.1.2.3 Series: Every sequence x = (z3) € w is associated with a series )~z
whose terms are exactly those of x and so it has the same sequence of partial sum
which is o(z). Thus, it seems to be quite natural to similarly say that » .- x is
a null, convergent or bounded series if its sequence of partial sum o(z) is a null,

convergent or bounded sequence, respectively. That is, the series Y.~ | x) is bounded

if sup, [ > r_, xk’ < 00, and it is convergent if lim, . » ,_, 2% exists (in K). Also, by
a null series, we mean a convergent series to zero, i.e. lim, oo Y p_; T = D poy T = 0.
A series Y 2 | xy, is said to be absolutely convergent if the series >, |z)| converges
and we denote it by >~ || < oo (it is well-known that absolute convergence of series
implies their convergent, but the converse is not). In general, for any real number p > 1,
the series > 7~ | xy is said to be p-absolutely convergent if Y, | |xx|P < oc.
A sequence z is said to be of bounded variation if Y. |ry — xp_1] < o0 or

equivalently "% |A(z)| < co. More generally, for any real number p > 1, we say

that x is of p-bounded variation if >~ |x) — xp_1|P < 00 or Y o |Axy) [P < oo [10].

1.1.2.4 Sequence Spaces: By w, we denote the linear space of all (real or complex)

sequences over the scalar field K (with coordinate-wise addition and scalar multiplica-



tion) and any vector subspace of w is called a sequence space. Throughout, we shall
write /., ¢ and ¢y for the sequence spaces of bounded, convergent and null sequences,
respectively. Also, for each real number 1 < p < oo, the sequence space ¢, is con-
sisting of all sequences associated with p-absolutely convergent series. These sequence
spaces are known as the classical sequence spaces. Further, we write bs, c¢s and csg
for the spaces of all sequences associated with bounded, convergent and null series,
respectively. Moreover, by (o (A), ¢(A) and c¢o(A), we stand for the difference spaces
of all sequences with bounded, convergent and null difference sequences, respectively.
Furthermore, for each real number 1 < p < 0o, we denote the space of all sequences of

p-bounded variation by bv,. That is, we have the following sequence spaces:
co = {x = (zx) € w: limyg_yo T = 0},
c= {x = (xg) € w: limy o 7 exists},
loo = {z = (zk) € w: supy |z;] < oo},
f={z=(m) ew: T2 |l <oo} (1<p<oo),
€Sy = {x = (xp) €w: limy, o Y py @p = O},
cs = {x = (x1) € w: limy, oo D py Ty exists},
bs = {z = (z)) €Ew: sup, | > p_; k| < 0},
co(A) = {x = (zg) € w: limy oo (z — Tp_1) = 0},
c(A) = {x = (zg) € w: limy oo (T — T_1) exists},
loo(A) = {z = (23) € w: supy |2y, — 21| < o0},
b, ={z=(zx) €Ew: > |op —zpaP < oo} (1< p<o0),

and we define the sequence space bvg by bvg = c¢o N by [37].



1.1.2.5 Normed Sequence Spaces: A normed sequence space is of course a sequence
space X equipped with a norm ||-|| defined on X as a mapping ||-|| : X — R such that
[zl = 0, 2 = 0 whenever |[z]| = 0, [Jox|| = |af[lz]| and [l +y| < [lz]| + [[y]| for all
x,y € X and every o € K. In addition, a normed sequence space X is called a Banach
sequence space if it is complete with the topology generated by its norm.

Further, if X and Y are normed sequence spaces; then we say that X is isometri-
cally linear-isomorphic to Y, denoted by X = Y, if there exists a linear isomorphism
L : X — Y which preserves the norms, i.e. ||L(z)|y = ||z|x for all z € X, where ||-||
and ||-||y are the norms on X and Y, respectively. That is, the operator L : X — Y is
linear, bijective and norm-preserving (or isometry).

Furthermore, if X is a normed sequence space; then for each positive integer k,
there exists a mapping 1 : X — K defined by x — mp(z) = x; for all z € X, these
mappings 7’s (for all k) are called the coordinate-maps of X or the coordinates of X,

where K is the scalar field of X [16].

1.1.2.6 Schauder Basis: As in the general case of arbitrary normed spaces, if a
normed sequence space X contains a sequence (b)), with the property that for every
x € X there exists a unique sequence (ay)52; of scalars such that
lim, o0 || — (1by + by + - -+ 4+ ayby)|| = 0;

then the sequence (b),—, is called a Schauder basis for X (or briefly a basis for X)
and the series >/~ ; ayby, which has the sum z is then called the expansion of z, with
respect to the given basis, and we then say that x has uniquely been represented in
the form z = 3 ;- | aybg. Further, a normed sequence space X is said to be separable
if it contains a countable dense subset, and it is well-known that every normed space

with Schauder basis must be separable [35].



1.1.2.7 BK Spaces: A normed sequence space X is called a BK space if it is complete
and all its coordinate-maps are continuous. In other words, by a BK space, we mean
a Banach sequence space with continuous coordinates. It is well-known that the above
mentioned sequence spaces are all BK spaces with their natural norms. More precisely,
the spaces (o, ¢ and ¢y are BK spaces with the sup-norm || - ||« given by ||z]e =
supy, |zx|. Also, for 1 < p < oo, the spaces ¢, are BK spaces with the p-norm || - ||,
defined by [|z]|, = (D pe;|zk/? )l/p and the spaces bv, are BK spaces with their norm
| - [lew, given by [|z|lp, = (D peqlzr — xk_1|p)1/p. Moreover, the spaces bs, cs and csg

are BK spaces with the series-norm || - ||s defined by ||z||s = sup,,

Y 1Tk ‘ Besides,
the difference spaces (o (A), ¢(A) and ¢o(A) are BK spaces with the A-norm || - ||a

given by ||z||a = supy, |zx — xx_1] [16].

1.1.2.8 Dual Spaces: For any sequence space X, the concept of Kéthe-Toeplitz duality
of X, so-called as the a-, 8- and vy-duals of X can simply be given by means of the
spaces () = {1, (f) = cs and () = bs. For this, let § be any of the duality symbols
a, B or 7, that is 6 := «a, § or 7. Then, the #-dual of X is a sequence space denoted

by X? which can be defined as follows:
X'={acw:are ) forallz € X} (0 =a,p ory), (1.1.3)

where () = {1, (8) = ¢s and () = bs. In other words, the a-, 5- and -duals of X are

respectively denoted by X, X# and X" which are sequence spaces defined as follows:

X% = {a: (ar) € w: ax = (arxy) € €1 for all x = (zy) EX},

X7 {a:(ak)Ew: axr = (arxy) € cs for all a::(:vk)eX},

X7 = {a: (ag) € w: ax = (agzyg) € bs for all x = (xy) GX}.

10



Further, it is well-known that X* C X”? C X", the inclusion X C Y implies that
V? ¢ X% and we have ¢f = ¢? = 00 = {1, 1] = ( and (! = {, for p > 1 with
qg=p/(p—1), where X and Y are sequence spaces. The basic properties of dual spaces

can be found in [37, 67].

1.1.2.9 Matrix Transformations: Due to the infinite dimensions of sequence spaces
in the general case, the notion of matriz transformations between sequence spaces has
been arisen to study the linear operators between such spaces which can be given by
infinite matrices. For an infinite matrix A with real or complex entries a,; (n,k > 1),
we write A = [an]p%—, or simply A = [a4], and we will write A, for the n-th row
sequence in A, that is A, = (ank)5, for each n > 1. Also, for any sequence x € w, the
A-transform of x, denoted by A(z), is defined to be the sequence A(z) = (A,(x))52,

whose terms given by
An(@) =) amear  (n>1) (1.1.4)
k=1

provided the convergence of series for each n > 1 and we then say that A(z) exists.
Further, for any two sequence spaces X and Y, we say that A acts from X into Y if
A(x) exists and A(z) € Y for every x € X [35]. Furthermore, the matriz class (X,Y) is
defined to be the collection of all infinite matrices acting from X into Y. In particular,
an infinite matrix A is said to be conservative if A € (¢, c) and a conservative matrix
A is said to be regular if lim,,_, A, (z) = lim,_,o x, for all € ¢. In fact, there may
exists an infinite matrix A such that A ¢ (X,Y’) and so the infinite matrices in the
class (X,Y’) must be characterized from those matrices which are not in (X,Y’). That
is, there must exist a list of necessary and sufficient conditions on the entries of a given
infinite matrix A to be in the class (X,Y), where A € (X,Y) if and only if A(z) exists

as well as A(z) € Y for every x € X. In other words, A € (X,Y) if and only if A4, € X7
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for every n > 1 and A(x) € Y for all x € X, where each A, is the n-th row sequence

in A, and so the $-duality is an important tool for characterizing matrix classes [16].

1.1.2.10 Matrix Operators: If A € (X,Y); then A defines a linear operator A :
X =Y by x — A(z), and we may call it as a matriz operator (matrix mapping) and
the same for every linear operator from X into Y which can be given by an infinite
matrix. That is, a linear operator between sequence spaces L : X — Y is called a
matrix operator if there exists an infinite matrix A € (X,Y’) such that L(z) = A(z)
for all x € X and we then say that L is given by an infinite matrix, viz A. Moreover, it
is worth mentioning that the most general forms of linear operators between sequence
spaces can be given by infinite matrices [37]. This fact gives a special importance for
the notion of matrix transformations between sequence spaces, which has been studied
by several authors in many research papers (e.g., see [12, 32, 36, 38, 48, 64]) and has
recently been used to introduce new sequence spaces and characterize their matrix

classes by means of the idea of matrix domains (e.g., see [3, 25, 27, 30, 37, 53, 70]).

1.1.2.11 Matrix Domains and Triangles: For an infinite matrix A and a sequence
space X, the matriz domain of A in X is a sequence space denoted by X4 which can
be defined as follows:

Xa={zecw: Alx) e X}. (1.1.5)

The most useful cases of matrix domains are those obtained from special types of
infinite matrices called as triangles, where an infinite matrix 7' = [t.]35,—; is called
a triangle if t,, # 0 for every n > 1 and ¢, = 0 for all £ > n (n,k > 1). That is,
the infinite matrix 7" has non-zero diagonal entries while all its entries on the upper
side are zeros. For example, by using (1.1.1) and (1.1.4), it can easily be seen that the

sum-matrix ¢ and the band-matrix A are infinite matrices which are triangles defining
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the partial sum and the difference operator, respectively. To see that, consider the

following triangles:

1 000 1 0 0 0
1100 - -1 1 0 0
1111 - 0O 0 -—-11

with their transforms as o(z) = (0,(x)) and A(z) = (A, (z)) which can be obtained
by using (1.1.4) to get o,(z) = > p_, 2 and A, (z) = z, — 2, for all n > 1 with
Ay(z) = 1 (x € w) which is the same result as given in (1.1.1) (with noting that the
term A(z,) has been used instead of A, (z) for every n > 1, and this convention will
only be used for the A-transform). That is, for every = € w, the sum sequence o(z) and
the difference sequence A(z) are the o-transform and A-transform of z, respectively.
This fact, together with (1.1.5), leads us to use the concept of matrix domain in order

to redefine some sequence spaces (given in Section 1.1.2.4, p.8) as follows:
cso = () ={r €w: o(x) € o},
cs=(c)g ={x€ew: o(x) € c},
bs = (U)o ={z €w: o(x) € l},
co(A) = (co)a ={z € w: A(z) € o},
c(A) = (c)a={z € w: A(x) € c},
loo(A) = (lec)a = {z € w: Az) € U},
bop = (t)s = fr€w: A €4} (1<p< )

which means that these spaces are the matrix domains of the triangles ¢ and A in
the classical sequence spaces. This idea has been applied by many authors in several

interesting studies as presented in the next section.
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1.1.3 Review of Literature

The approach constructing a new sequence space by means of the matrix domain
of a particular infinite matrix has been employed by Maddox, Wang, Ng, Lee, Kizmaz,
Rakocevi¢, Malkowsky, Savas, Basar, Altay, Mursaleen, Noman, Karakaya, Kirici,
Kara, Polat, Aydin, Bektag and many others (e.g., see [15, 18, 27, 28, 30, 32, 36, 38,
44, 47,48, 51, 60, 70]). More recently, the idea of introducing a new sequence space by
means of the matrix domain of a particular triangle has largely been used by several
authors in many research studies with different manners. For instance, we display here

the following previous studies:

1.1.3.1 The Norlund sequence spaces have been introduced by Wang in 1978 [66]

as domains of the Norlund matrix N? in the spaces ¢y, ¢ and £, that is
nt={rcw: N(z) €}, nt={rcw: Niz)ec}, nl={rxecw: N(z)€ly}

which are BK spaces with ||z||xs = ||V9(2)| e, Where ¢ = (&) is a sequence of non-
negative real numbers such that ¢; # 0 and

1 n

Nj(z) = @Zkzlqnwrl z with @, = Zkzl% (n>1).

1.1.3.2 The difference sequence spaces have been defined by Kizmaz in 1981

[32, 33] as domains of the band matrix A in the spaces ¢y, ¢ and {, that is
w(A) ={zr e w: Ax) € u} (= co,cor lo)
which are BK spaces with ||z|a = ||A(2)||c, Where A(z) = (2, — Tp_1)-

1.1.3.3 The Riesz sequence spaces have been constructed by Malkowsky in 1997
[36] as domains of the Riesz matrix R’ in the spaces cg, ¢ and ., that is
ro={rew:R(x) €y}, rt={zew:R(z)ec}, ry={vecw: R (z) € l,}
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which are BK spaces with ||| gt = || R'(2)||eo, Where ¢ = (1) is a sequence of positive
real numbers and

1

Ri(z) = ?Z:ﬂ v, with T, = Z:thk (n > 1).

1.1.3.4 The sequence spaces of p-bounded variation have been introduced by
Basar and Altay in 2003 [11] as domains of the band matrix A in the spaces ¢,
where 1 < p < oco. That is bv, = {z € w : A(z) € {,} which are BK spaces with

2 |bw, = [|A(x)||, for all z € bv, (1 < p < 00).

1.1.3.5 The Euler sequence spaces have been constructed by Altay and Basar in
2005 [4] (and together with Mursaleen, 2006 [43, 56]) as domains of the Euler matrix
E" in the spaces ¢y, ¢, {o and £, for 1 < p < oo, that is
ep={recw: E"(x) €}, e ={rvecw:E(x)e€c}
ero ={rcew: E'(z) €l}, e,={vrcw:E(z)€lp}
Also ep, e and el are BK spaces with ||z][g = ||E"(2)|| and all e} are BK spaces

with ||z[|g; = [[E"(2)]], (1 <p < o0), where 0 <7 <1 and

B =" (3° 1)(1 Rl (> 1),

1.1.3.6 The sequence spaces of weighted means have been defined by Malkowsky
and Savas in 2008 [38] as domains of the matrix W} of weighted means in the spaces

w, where i = cg, ¢ or Uy, that is wi(p) = {z € w: Wi(x) € u} which are BK spaces

with ||zl = [|[W!()||s, where s and ¢ are sequences of non-zero scalars and
Do) = =5 > 1
W) =3 re (2 1)

1.1.3.7 The generalized Norlund sequence spaces have been studied by Stadt-

miller and Tali in 2009 [63] as domains of the generalized Nérlund matrix (N, s,t) in
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the spaces p = ¢, ¢ or lo, that is u(N,s,t) = {z € w : (N,s,t)(z) € p} which are
BK spaces with ||z, = [|(IV,5,1)(2)]s, Where s and t are sequences of scalars

such that Y, s,_k11t, # 0 and

1 n . n
(N, s,t),(z) = _ZkZISn_k+1tk x with r, = ZkZISn_k+1tk (n>1).

Tn
1.1.3.8 The sequence spaces of generalized means have been defined in 2011 by
Mursaleen and Noman[48| as domains of the matrix A(r,s,t) of generalized means in
the spaces p, where = co, ¢, lo or £, (1 < p < 00), that is u(r,s,t) = {z € w :
A(r,s,t)(x) € p} which are BK spaces with ||zt = ||A(r, s,t)(2)]|4, where 7 and

t are sequences of non-zero scalars, s is a sequence of scalars with s; # 0 and

1 n
A(r,s,t),(z) = — Zkzlsn,kﬂtk T, (n>1).

T'n

1.1.3.9 The A-sequence spaces ;* have been introduced by Mursaleen and Noman
in 2010 - 2011 [44, 46, 47] as domains of the A\-matrix A in the spaces pu, where p is
any of the spaces ¢y, ¢, { or £, for 1 < p < oo, that is u* = {z € w : A(x) € u} which

are BK spaces with [|z|[,» = [[A(z)]|, and the triangle A is given by

[ A(M)/ M 0 0
A(A1)/ A2 A(X2) /A 0
AM) /A3 A(X2)/As A(X3)/As

where A = (\g) is a strictly increasing sequence of positive real numbers and

1

Anle) = - Z:ZlA()\k)xk (n > 1).

e [t is worth mentioning that the notions of A-matrix and A-sequence spaces have proved
their useful in some subjects with various applications in the operator theory, spectral

theory and measure of non-compactness (e.g., see [10, 49, 71, 72]). In fact, the idea of
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A-sequence spaces is very interesting and so it has been taken away by researchers and
authors upto so far limits. For instance, they have introduced the concepts of statistical
A-convergence and strong A-convergence by using the generalized de la Vallée-Poussin
mean in 2011 (see Mursaleen and Alotaibi [42]) and other authors have studied some
general difference forms of the A-matrix and A-sequence spaces (e.g., Sénmez with
others in 2012 [62] and Biggin and others in 2014 [14]). Also, some of them have
introduced the concept of almost convergence of double sequences in A-sequence spaces
(e.g., Ahmad and Ganie in 2013 [1] and Raj with others in 2015 [57]) and others have
introduced the spaces of almost lambda null, almost lambda convergent and almost
lambda bounded sequences (e.g, Yesilkayagil and Bagar in 2015 [73] and Ercan in 2020
[20]). Further, we have selected the next six studies, based on the A-sequence spaces,

to be included in our list of previous studies.

1.1.3.10 The difference A-sequence spaces have been introduced by Mursaleen

and Noman in 2010 [45] as domains of the matrix A in the spaces ¢y, ¢ and £, that is
pMA) = {z € w: A(x) € u} (= co,cor L)

which are BK spaces with |||z = ||A(7)]|s, where
Ao(z) = Ain S AN (@ -re) (=),

1.1.3.11 The paranormed A-sequence spaces have been introduced by Karakaya,
Noman and Polat in 2011 [29] as domains of the A-matrix A in the paranormed sequence

spaces u(p) of Maddox [35], that is

Ap) = {z € w:A@@) € p(p)} (1 =cocor b)

which are paranormed spaces with their paranorm ||z, = [[A(2)] @), Where p =
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(pr) is a bounded sequence of positive real numbers, || - ||, is the paranorm on the

Maddox’s spaces p(p) and p is any of the spaces ¢, ¢ or £u.

1.1.3.12 The Aj,-sequence spaces have been defined by Braha and Basar in 2013

[15] as domains of the matrix A, in the spaces ¢y, ¢ and {,, that is

A\(p) ={z e w: A\(z) € pu} (1= co,cor ly)

which are BK spaces with ||z]|a, = |[|Ax(2)||ec, Wwhere A, is the same matrix A with

the sequence A(A) instead of A provided that A()) is increasing, that is

(Aale) = 5 L (AW = A ) (02 1),

1.1.3.13 The A)-sequence spaces have been studied by Ganie and Sheikh in 2013

[23] as domains of the matrix A in the spaces ¢y, ¢ and £, that is
p(AY) ={z cw: A)(z) € u} (1= cop,cor ly)

which are BK spaces with [|2]|ax = [|A3(2)||o, where u = (uy) is a real or complex

sequence of non-zero terms and

1

(ADn(e) = =37, o = M) (e — ) (02 1),

1.1.3.14 The Af}‘—sequence spaces have been defined by Ercan and Bektag in 2014

[21] as domains of the matrix A} in the spaces ¢y, ¢ and (o, that is
pMA) = {z € w: A)(z) € u} (= co,cor L)

which are BK spaces with [lz]|ay = [|A)(2)[|c, where v = (i) is a real or complex

sequence of non-zero terms and

1

(A))n(2) = )\—nzzl()\k = M) (UpTR — vpaTp—1) (2> 1).
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1.1.3.15 The U>-sequence spaces have been studied by Zeren and Bektas in 2014

[75] as domains of the matrix U in the spaces ¢y, ¢ and £, that is
pru) ={x € w: UNz) € p} (= co,cor ly)

which are BK spaces with ||z]|p» = ||[U*(2)||e, Where u = (u;,) is a real or complex
sequence of non-zero terms and

Unp

V) = 3 : Mk =Nz (n>1).

1.1.3.16 The binomial sequence spaces have been introduced by Bisgin in 2016

[13] as domains of the binomial matrix B™* in the spaces £, for 1 < p < oo, that is

by ={r €w: B"(x) €l,} (1 <p<o0)

which are BK spaces with |[z[/grs = [|B™*(2)[[, (1 < p < 00), where r and s are

non-zero real numbers such that r + s # 0 and

rsloN 1 nom=1\ nk k1
Bn (.Z') = Wzk:l (k‘ . 1)8 r T (TL > 1)

1.1.3.17 The Pascal sequence spaces have been constructed by Aydin and Polat

in 2018 [8] as domains of the Pascal matrix P in the spaces ¢y, ¢ and (., that is
Po={rzecw:Plx)ec}, P.={vcw:Plx)ec}, Po={rvcw:Plx)ely}

which are BK spaces with ||z]|p = || P(2)]|s, Where

R ) PR TEY

1.1.3.18 The Pascal difference spaces have been introduced by Aydin and Polat
in 2019 [53] as domains of the generalized band matrix A™ of order m in the Pascal

sequence spaces Py, P. and P,, that is

n(A™) = {zcw: A™(z) en}  (n= Py, P.or Py)
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which are BK spaces with ||z[| paem)) = | P(AT(2))||s0, Where P is Pascal matrix and

m n n— m
A; )(.1') - Zk:max{l nfm}<_1) k(n - k) Tk (n 2 1)

Lastly, we refer the reader to [3, 24, 26, 37, 55, 68, 69, 70, 74] for additional studies

constructing new sequence spaces as matrix domains of infinite matrices.

1.2 Research Methodology
In this section, we display the research methodology used in our investigation.

1.2.1 Research Problem

It is obvious, from the previous studies mentioned in above section, that there are
many new sequence spaces of A»-type which have been introduced and studied including
the difference A-sequence spaces (see previous studies, from Section 1.1.3.10 to Section
1.1.3.15, pp. 17-19) but the A-difference spaces defined by the A-difference sequences
have not, which forms a problem in the literature. So, we are going to introduce and

study the A-difference spaces of bounded, convergent and null A-difference sequences.

1.2.2 Research Objectives

In this study, our aim is to add the following contributions:

e Introducing some new A-difference spaces by means of A-difference sequences.

e Study some isomorphic, algebraic and topological properties of these new spaces.
e Constructing the Schauder bases for the new \-difference spaces.

e Establishing some new inclusion relations between these new spaces.

e Concluding the Kéthe-Toeplitz duals of the new A-difference spaces.

e Characterizing some new classes of matrix operators on and into these spaces.
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1.2.3 Research Tools

In the present thesis, our study and investigation will be based on the usual math-
ematical tools as the proof and conclusion, and the usual mathematical methodology as
the mathematical induction, conclusion and investigation. Also, many mathematical
concepts will be used as main tools in our thesis, and the most important tools among

them are sequence, series, matrix and space.

1.3 Preliminaries

In this section, we give a list of the preliminary results which are already known

in the literature of the theory of sequence spaces and matrix transformations.

Lemma 1.3.1 (Boos [16]) If p <p (1 < p < p' < 0); then the inclusions €, C Ly

and bv, C buy are strictly satisfied. Further, we have the following strict inclusions:
co CcCly, L, Ccy, L, Cbu, Cco(A), ¢soCesCbs,

co(A) C c(A) Cl(A), bs Clo Cl(A), buy CecCeo(A), €1 CesC .

Lemma 1.3.2 (Malkowsky [36]) We have the following facts:

(1) The spaces Ly, ¢ and ¢y are BK spaces with the sup-norm || - || given by
[2]lo = supy |kl
(2) The spaces lo(A), c¢(A) and co(A) are BK spaces with the A-norm || - ||a

defined by ||z||a = sup,, |A(x,)| = sup,, |z, — x,_1].

Lemma 1.3.3 (Malkowsky [37]) We have the following facts:

(1) The sequence (e, ea,€3,---) is a Schauder basis for the space ¢y and every

T € ¢y has the unique representation v = o | Ty €.
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(2) The sequence (e, ey, eq,---) is a Schauder basis for the space ¢ and every x € ¢

has the unique representation x = Le+Y . (xx—L) ey, where L = limy_,o .

(3) The spaces ¢y and ¢ are separable while {+, is not separable and has no Schauder

basis (in general, every normed sequence space with Schauder basis is separable).

Lemma 1.3.4 (Kizmaz [32,33]) For every sequence x = (zy), we have the following:
(1) If x € Uo(A); then (z1/k) € (.

(2) If x € ¢(A); then (x/k) € ¢ and limg_,oo A(xy) = limy 00 1 /k (in particular,

if © € co(A); then (zx/k) € cp).

(3) If x is a real sequence such that limy_,oo A(xy) = 00; then limy_,o0 2k /k = 00.

Lemma 1.3.5 (Wilansky [67]) Let X and Y be sequence spaces. Then, we have:
(1) X*c XP c X7,
(2) If X CY; then Y’ C XY, where 0 =, 3 or .

(3) ¢ =’ =4l =ty ] = o and (] = Ly for p>1 with ¢ =p/(p —1).

Lemma 1.3.6 (Maddox [35]) Let X,Y and Z be sequence spaces, and A an infinite

matriz. Then, we have the following facts:
(1) Ae (X,Y) <= A, € X for everyn >1 and A(x) €Y forallz € X.
(2) If X C Y, then (Y, Z) C (X, Z).

(3) If Y C Z; then (X, Z) C (X,Y).

Lemma 1.3.7 (Malkowsky [38]) Let X andY be sequence spaces, A an infinite matriz

and T a triangle. Then, we have the following facts:

(1) T e (X,)Y) <= T(x) €Y forallz € X (note that: T'(x) exists for all x € w).
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(2) If X is a BK space with a norm || - ||; then X7 is a BK space with the norm

|- llz defined by |[z||lr = | T(2)|| for all z € Xr.

(3) Ae (X,Yr)«—=TAc (X,)Y).

Further, it seems to be quite natural, in view of the fact that matrix operators
between BK spaces are continuous, to find necessary and sufficient conditions for the
entries of an infinite matrix to define a linear operator between BK spaces which means
the characterization of matrix classes of sequence spaces. The following familiar results
can be found in [64, pp. 2-9] and will be needed to prove our main results in the next
chapters. In the following, we will use the symbol p to be any of the spaces ¢y, ¢ or

ls, and K stands for the collection of all non-empty finite subsets of positive integers.

Lemma 1.3.8 Let 1 < p < oo. Then, we have (co,¥p) = (¢,€,) = (l,lyp), and

A € (. 0,) if and only if the following condition holds:

up 3 [Y 0

Kek 120 \kek

p
< 00,

where KC stands for the collection of all non-empty finite subsets of positive integers.

Lemma 1.3.9 We have (¢, lo) = (¢, lo0) = (loo, o), and A € (u,ls) if and only if

the following condition holds:
sup Z |ank| < 00 (1.3.1)
"ok=1

Lemma 1.3.10 We have the following:

(1) A€ (co,c) if and only if (1.3.1) and the following condition hold:

lim a,, = ay exists for every k> 1. (1.3.2)

n—oo
Further, if A € (co, ¢); then lim,, oo Ap(x) =D 1o | agxy for all x € c.
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(2) A€ (¢,c) if and only if (1.3.1), (1.3.2) and the following condition hold:

o0

7}1320 Z Qni, = @ exists.
k=1
Further, if A € (c,c¢); then lim, o Ay(x) = L(a — Y ooy ag) + Y pey axZy for all

x € ¢, where L = limy,_, o xk.

(3) A€ (lu,c) if and only if (1.3.1), (1.3.2) and the following condition hold:

o0
lim Z |apk —ag] =0.
n—oo

k=1

Further, if A € ({s,c); then lim, oo A,(z) = 1| apxy, for all v € .

Lemma 1.3.11 We have the following:

(1) A€ (b, o) if and only if the following condition holds:

o0
lim Z |ani| = 0.
n—oo

k=1

(2) A€ (c,c) if and only if (1.3.1) and the following conditions hold:

lim a,, =0 for every k> 1, (1.3.3)
n—oo

lim Z ant = 0.

n—oo P

(3) A€ (co,co) if and only if (1.3.1) and (1.3.3) hold.

Lemma 1.3.12 We have the following:

(1) A€ (l1,0y) if and only if the following condition holds:

sup |ank| < 0. (1.3.4)
n,k

(2) A€ (01, c) if and only if (1.3.2) and (1.3.4) hold.
(3) A€ (l1,co) if and only if (1.3.3) and (1.3.4) hold.
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Lemma 1.3.13 Let 1 <p < oo and g =p/(p —1). Then, we have the following:

(1) A€ (by,lx) if and only if the following condition holds:

sup Z |ank|? < oo. (1.3.5)
" k=1

(2) A€ (b, c) if and only if (1.3.2) and (1.3.5) hold.

(3) A€ (l,,co) if and only if (1.3.3) and (1.3.5) hold.

Lastly, to prove the main results in this study, we need the following two lemmas

concerning the A-matrix and the A-sequence spaces (see Section 1.1.3.9, p. 16).

Lemma 1.3.14 (Noman [52]) We have the following:

(1) The matriz A is reqular* if and only if A\, — o0 as k — oo (or equivalently
/X € ¢y, where 1/XA = (1/X)32,).

(2) For every sequence x € w, we have the following satisfied equality:

An—l

s W

[An(2) = Apa(z)] (0 21).

Lemma 1.3.15 (Mursaleen [44,46]) Let 1 < p < co. Then, we have the following:
(1) The inclusions £y C ¢y C ¢ C £, strictly hold.
(2) The inclusions ¢ C ¢ and ls, C €2, hold.

(3) The inclusion cy C ¢} holds if and only if 1)\ € co, where 1/ = (1/\g),.

*That is limg_yeo Ag(z) = limg_, o0 xy, for every z € c.
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Chapter 2
NEW A-DIFFERENCE SPACES




2 NEW A-DIFFERENCE SPACES

The idea of constructing a new sequence space by means of the matrix domain of a
particular limitation triangle has recently been employed by several authors in many re-
search papers (see for example [3, 25, 27, 53, 70]). In this chapter, we first study some
additional properties of the well-known difference spaces (o (A), ¢(A) and ¢y(A) of
bounded, convergent and null difference sequences, respectively. After that, we will in-
troduce the new A-difference spaces £, (A*), ¢(A*) and cy(A?*) of bounded, convergent
and null MA-difference sequences, respectively. Further, we study some isomorphic, alge-
braic and topological properties of our new spaces. Finally, we construct the Schauder
bases for the spaces ¢c(A*) and co(A*) with concluding their separability. This chapter
is divided into three sections, the first is devoted to study the usual difference spaces,
the second is for introducing our new spaces with study their properties and the last
is to construct their Schauder bases. The materials of this chapter are part of our
research paper® which has been published in the Albaydha Univ. J., and presented in

the 2" Conference of Albaydha University on 2021.

2.1 Difference Sequence Spaces

In this section, we study some additional properties of the usual difference spaces
loo(A), ¢(A) and ¢y(A) of all sequences having bounded, convergent and null difference
sequences, respectively. These spaces have been introduced by Kizmaz in 1981 [32]

which have been defined in [33] as the domains of the triangle A, so-called as the band-

*A.K. Noman and O.H. Al-Sabri, On the new \-difference spaces of convergent and bounded
sequences, Albaydha Univ. J., 3(2) (2021), 18-30.
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matrix, in the spaces (o, ¢ and ¢y, respectively. That is loo(A) = (leo)n, ¢(A) = (¢)a
and ¢o(A) = (¢g)a which can be written as (o (A) = {z € w : A(z) € o}, c(A) =
{r ew: A(z) € ¢} and ¢(A) = {z € w: Ax) € ¢}, where A(x) = (A(z,)) and

A(xy,) = x, — Ty for all n > 1 with A(zy) = 7. This yields the following:
co(A) = {z = (zn) € w: limy 00 Azn) = 0},
c(A) ={z = (x,) € w: lim,,o A(z,) exists},
loo(A) = {z = (z,) € w: sup, |A(z,)| < oo}

Further, since {y, ¢ and ¢y are BK spaces with || - ||« and A is a triangle; it
follows that £ (A), ¢(A) and ¢o(A) are BK spaces with the norm || - [|a given by
|lz||a = sup, |A(z,)| (see (2) of Lemma 1.3.2). Furthermore, we may begin with
proving the following three well-known results which are necessary to be proved here

in order to understand the basic idea and tools in this field.

Lemma 2.1.1 The difference spaces lo(A), c(A) and co(A) are isometrically linear-

isomorphic to the spaces U, ¢ and cy, respectively. That is lo(A) = Ly, ¢(A) = ¢ and

Co(A) = Co.

Proof. Let u be standing for any one of the spaces {, ¢ or co, and let p(A) be the
respective one of the spaces (o(A), ¢(A) and co(A). Then, it follows by definition
that the spaces pu(A) are the domains of the band-matrix A in the spaces p, that is
1(A) = pa and so we have the linear operator A : pu(A) — u. Also, since A is a
triangle and so invertible with A™! = ¢ [37]; we deduce that A is a linear bijection
preserving the norm, where ||A(z)||« = ||z||a for all z € u(A). Hence, the space pu(A)
is isometrically linear-isomorphic to the corresponding space pu, that is u(A) = p and

this completes the proof. O
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Lemma 2.1.2 Suppose that
e =(1,1,1,1,--+), ea=(0,1,1,1,---), e3=(0,0,1,1,---), --- ete.

Then, we have the following facts:

(1) The sequence (1,62, €3---) is a Schauder basis for the space co(A) and every
x € ¢o(A) has the unique representation © =Y ;- | Ag(x) é.

(2) The sequence (e, éy,é€z,€3---) is a Schauder basis for the space c(A) and every
z € c(A) has the unique representation x = Le 4+ Y - (Ag(x) — L) &, where

e=(k)=1(1,2,3,---) and L = lim,_, Ay ().

Proof. Since each of the spaces co(A) and ¢(A) is isometrically linear-isomorphic to
the corresponding space ¢y or ¢ (by Lemma 2.1.1); parts (1) and (2) are respectively
immediate by (1) and (2) of Lemma 1.3.3, as A(€) = e and A(eg) = e for all & > 1,

where (e1,e9,e3---) and (e, eq, 9,3+ ) are Schauder bases for ¢y and ¢ (respt.). O

Lemma 2.1.3 The spaces co(A) and c¢(A) are separable while the space Lo (A) is not

separable and has no Schauder basis.

Proof. This result follows from (3) of Lemma 1.3.3, since ¢y(A) and ¢(A) are BK
spaces and so normed spaces having Schauder bases (by Lemma 2.1.2) while the space

(o (and so {4 (A)) is not separable and has no Schauder basis. O

Moreover, some inclusion relations concerning the difference spaces (o (A), ¢(A)
and ¢o(A) can be found in Lemma 1.3.1. For example, we have the strict inclusions
co(A) C c(A) Cl(A), ¢ Cep(A), loo C le(A) and bu, C ¢p(A) for 1 < p < 0.

Furthermore, we may now add some new idea and prove additional properties of

these difference sequence spaces. So, we have the following results:
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Lemma 2.1.4 We have the following relations:

(1) The inclusion lo N c(A) C co(A) strictly holds.
(2) The equality o N c(A) = Lo N co(A) holds.

(3) The inclusion ¢ C Lo N cy(A) strictly holds.

Proof. For (1), take any = € {,Nc(A). Then x € o, aswellas z € ¢(A) and so A(z) €
c. Also, it follows by (2) of Lemma 1.3.4 that (xy/k) € ¢ such that limy_,. A(xg) =
limy 00 1 /k. But 2 € l and so limy_, xx/k = 0 which implies limg_,o, A(zg) = 0
(as limg_yoo A(zg) = limy oo 25 /k). Thus = € co(A) and hence lo, N c(A) C co(A).
Also, to show that this inclusion is strict, consider the unbounded sequence y = (V& ).
Then A(y) = (VE — vVE — 1) and so lim_s0 A(yg) = limgyoe 1/(VE+VE—1) =0
which means that A(y) € ¢y and hence y € ¢o(A). Thus y € ¢y(A) while y ¢ ¢, and
s0 Yy & Lo, N c(A). Therefore, the inclusion £o, Nc(A) C co(A) is strict.

To prove (2), we have ¢o(A) C ¢(A) and s0 lo N (D) C log Ne(A). Also, for the
converse inclusion, it is clear that £, N c(A) C ly and we have lo, N c¢(A) C ¢o(A) by
part (1) which together imply that { N c(A) C lo Ncp(A). Consequently, we deduce
the equality fo N c(A) = Lo Nco(A).

For the last part (3), it is obvious that the inclusion ¢ C o N ¢o(A) holds by
Lemma 1.3.1. To show that this inclusion is strict, consider the sequence z = (z) with

terms z;’s given, via k and any positive integer n, by

o = % +(=1)" (—21{2_(71(131) ) for all D g Dt

That is, our z is the following sequence
1
3 Y
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Then, it can easily be seen that —1/2 < [2k — (n + 1)?]/[2(n + 1)] < 1/2 whenever
nn+1)/2<k<(n+1)(n+2)/2and so 0 < 2z, <1 for all £ > 1 which means that
z € lx. But z is oscillated between 0 and 1 (as z,(n11)2 = (1 — (=1)")/2 for all n)

which means that z ¢ c¢. On other side, we find that

1 111 1 1 1 1
A(z) = (17_§a_§a 33 5’_4_1’_4_1’_1’_1"”>

which can be written as A(z;) = (—1)""!/n for all (n?—n)/2 < k < (n®*+n)/2, where
n > 1. Thus, it is clear that A(z) € ¢y and so z € ¢y(A). Therefore, we have shown

that z € fo N¢o(A) while z ¢ c. Hence, the inclusion ¢ C £o, N c(A) is strict. O

Remark 2.1.5 We may note the follwing:

(1) Although the spaces ¢y and ¢ are strictly included in c¢o(A), the space /., is never
included in ¢(A) or c¢o(A). To see that, the alternating sequence r = ((—1)%) =
(=1, 1,—1, 1,--+) is bounded and so x € {,, but its difference sequence is not conver-
gent, where A(x) = (=1,2,-2,2,---) ¢ cand so x ¢ ¢(A).

(2) Although the spaces c¢o(A), ¢(A) and lo(A) overlap with ¢, none of them is
included in £,. To see that, we have (V) € co(A) \ £ (note also that A(k) = 1 for

all £ and so (k) € ¢(A) \ 4 )-

Example 2.1.6 We will show here that the converse implications of those given in
Lemma 1.3.4 are not true in the general case. For this, let © be standing for any of
the spaces cg, ¢ or o, and so p(A) is the respective one of the spaces co(A), c(A) or
lo(A). Then, we have the inclusions ¢y C p C £ as well as ¢p(A) C p(A) C loo(A).
Besides, it is known, by Lemma 1.3.4, that = € p(A) implies (zx/k) € p, but the
converse need not be true. For example, let z = ((—=1)*vk). Then, it is obvious
that (z/k) € co and so (xx/k) € p, but A(x) = (=1D)*(Vk + vk —1)) ¢ £y and so
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A(x) ¢ p which means that x ¢ u(A). That is (zg/k) € p while x ¢ p(A). Similarly,
let © = (1,1,9,9,25,25,---). That is 7 = k* when k is odd and z = (k — 1)? when k

is even. Then x/k — oo while A(zy) 4 oo (as k — 00), since A(zg,) — 0.

So, because of the above example, we have to deduce the precise characterization
of sequences in the difference spaces p(A), which will be given in the next theorem.
Theorem 2.1.7 For any sequence x = (xy), we have the following equivalences:

(1) x € lo(A) if and only if (xr/k) € lo and (kA(zg/k)) € loo.
(2) x € c(A) if and only if (x1/k) € ¢ and (kA(zx/k) ) € co.
(3) x € co(A) if and only if (zx/k) € ¢y and (kA(zg/k)) € co.

Proof. Let x = (x}) be given. Then, we can use (1.1.2) to derive the following

kA (%) = A(zg) — ]f’jll (k> 1), (2.1.1)
Alzy) = kA (%) + ]f’f_‘ll (k> 1). (2.1.2)

To prove (1), suppose that € £+ (A). Then (z4/k) € ls (by (1) of Lemma 1.3.4).
Also, since x € l(A); we get A(x) € Ly (by definition). Thus, it follows by (2.1.1)
that (kA(zy/k)) € . Conversely, if (xy/k) € o and (kA(xy/k)) € lo; we deduce
from (2.1.2) that A(z) € ¢ and so x € {(A) which proves part (1).

Similarly, parts (2) and (3) can be proved by using (2) of Lemma 1.3.4 with noting

that limg_y00 A(xg) = limy oo 2 /k = limy o0 251/ (k — 1) for every z € ¢(A). O
Finally, the last result in this section is analogous to that famous result in calculus
(the H'Lopital’s rule).

Corollary 2.1.8 Ifz,y € ¢(A), yr # 0 for all k and limg_,oo A(xg)/A(yy) exists; then

z/y € ¢ and we have

. Tk . A(iﬂk)
lim — = lim .
k—o0 Yk k—o0 A(yk)
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Proof. Suppose that z,y € c(A), yp # 0 for all & > 1 and lim, o A(zr)/A(yx)
exists. Then, since z,y € ¢(A); we have limy o A(zg) = limg_00 21 /k as well as
limy o0 A(yg) = limg oo yx/k (by (2) of Theorem 2.1.7 or (2) of Lemma 1.3.4). Also,
since Y # 0 for all k; the the quotient sequence z/y is well-defined. Besides, since

lim, o0 A(xr)/A(yr) exists; we dedeuce that

A
lim (z) = 1i i/ k = lim Lk

which means that limy_,.. x)/yx exists. Thus x/y € ¢ and the given formula is true. O

Remark 2.1.9 It must be noted that Corollary 2.1.8 can be generalized as follows:

If 2,y € c(A™), yp # 0 for all k and limy_.c A (21) /A (y,.) exists; then z/y € ¢
and we have
x A ()

lim 2F — 1jm =Tk
e mn N D) (y)’

where A is the generalized band-matrix defined for every positive integer m by

A () = A(AMD(2)) with AQ(z) = z and ¢(A™) = {z € w: A (2) € c}.

2.2 A-Difference Spaces

In this section, we will present the idea of A-sequence spaces and introduce the
new M-difference spaces £, (A%), ¢(A*) and co(A*) of bounded, convergent and null
difference sequences of A-type, respectively. Also, we will show that our new spaces are
BK spaces and conclude their isomorphic relations to the spaces /.., ¢ and ¢g, and to
the usual difference spaces (o (A), ¢(A) and ¢o(A), respectively.

Throughout this study, we assume that A = (\;),, is a strictly increasing sequence

of positive real numbers, that is 0 < A} < Ay < --+ and so A(\g) > 0 for all k£ > 1.
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Also, the A-matriz A is a triangle A = [An]%—, defined for every n, k > 1 by

Ak — k-1

ok T Akt 1
)\nk = )\n ’ (

0; (k

IN

k

IN

n),
1).

Then, with help of (1.1.4), the A-transform of any sequence x € w is the sequence

(2.2.1)

V
v

n

A(z) = (An(2)),—, given by

An(z) = Ain Ce— e )oe (> 1). (2.2.2)

The A-sequence spaces ¢, ¢, {2, and 52 (1 < p < o0) have been introduced by
Mursaleen and Noman in 2010 [44, 46, 47] as the matrix domains of A in the spaces

co, ¢, {s and €, respectively. That is
g = (co)r={z€w: Az) € c},
A= (c)r={rew: A@) € c},

A = (goo)A = {[]j cw: A(-T) € goo}a

o0

O=Upr={zcw: AMz)el,} (1<p<oo).

Further, it has been shown that the spaces ¢, ¢* and 2 are BK spaces with the
norm ||z{|a, = ||A(2)]lw = sup,, |An(x)|. Also, for each real number 1 < p < oo, the
space () is BK space with the norm [|z][x, = [|A(z)]], = (307, | A (z)[P)1/P.

Moreover, the difference A-sequence spaces cj(A), cMA) and (2 (A) have been

PN

studied in [45] as the domains of the band-matrix A in the A-sequence spaces cj, ¢

and (2 , respectively. That is, the difference A-sequence spaces are defined as follows:
g (A) = (c()\)A, A (A) = (C/\)A and £ (A) = (féo)A. (2.2.3)

We refer the reader to [44, 45, 46] and [47] for additional knowledge concerning

the A-sequence spaces and the difference A-sequence spaces.
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Now, as a natural continuation of above work, we go away from the technique used

in [45] and introduce the A-difference sequence spaces in the following definition:

Definition 2.2.1 The A-difference spaces co(AY), c¢(A*) and Lo (A*) are defined as
the matriz domains of the triangle A in the difference spaces co(A), c(A) and Lo (A),

respectively. That s
co(AN) ={co(A)}, = {x cw: Az) € CO(A)},
c(AY) = {c(A)}, = {x cw: Az) € C(A)},

loo(AY) = {loc (D)}, = {z € w: A(z) € l(D)}.
From above definition, the new contribution of this study can be given as follows:

co(AY) = {x cw: lim (Ay(z) — Api(2)) = 0} ,

n—oo

c(A*) = {x cw: lim (A, (z) — Api(2)) exists} :

n—oo

loo(A?) = {.73 cw : sup |A(z) = A (2)| < oo}

In other words, we introduce the A-matriz A to be a triangle A = [;\nk]jl“jkzl defined

for all n, k > 1 as follows:

)\’n, )\:TL]. : (n — k),
3 1
=y e ()i e, (22.4)
n n—1
0; (n <k).
Then, for every sequence x € w, we have
. AN 1) <=

which is also valid for n = 1 by noting that A(1/A;) = 1/A\; and the sum on the

right-hand side is equal to zero when n = 1. That is Ay(z) = Ay(z) = ;. Thus, the
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equality (2.2.5) can be rewritten as

An(z) = A(Ai >xn +A( ) S AN)z;  (n>1) (2.2.6)

7=0
to be more suitable with the case n = 1. Besides, by using (2.2.2) and (2.2.5), it can

easily be shown that
An(z) = Ap(z) — Api () (n>1) (2.2.7)

and so A(z) = (An(2) — Ap_1(2))>,. That is A(x) = A(A(z)) for all z € w which

means that A = AA. Thus, the new spaces co(AY), ¢(A*) and £ (A*) can equivalently

be redefined as in the following equivalent definition:

Definition 2.2.2 The \-difference spaces co(A*), c(A*) and o (A*) are defined as the

matriz domains of the triangle A in the spaces ¢y, ¢ and lw, Tespectively. That is

co (AY) = (co)z, c(AY) =(c); and £ (AY) = (L);- (2.2.8)

From Definition 2.2.2, it follows that u(A*) = {I cw: A ) € ,u} where p is any

of the spaces ¢, c or £,. More precisely, we have the following:

o (AY) = {x cw: lim A,(z) = 0} ,

n—o0

c(AY) = {x cw: lim A,(z) exists} :

n—o0

lo (AY) = {:er sup

n

/N\n(x)’ < oo}
and by using the help of (2.2.7) we obviously observe that
z € p(AN) <= Az) € p <= Ax) € u(A)
and this shows that Definitions 2.2.1 and 2.2.2 are equivalent which can also be noted

by the following example:
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Example 2.2.3 Consider the sequence A = (\;) given by Ay = k for all positive
integers k. Then A(A;) = 1 for all k. Also, let x € w be given. Then, by using (2.2.2)

and (2.2.5), we respectively obtain that

M) = 220 51y and Ry = fn o Tl gy

n n  n(n—1)

where o, (x) = >")_, ) for all n. Besides, let p be standing for any of the spaces c,
c or {s. Then, by using Definitions 2.2.1 and 2.2.2, we obtain two formulae for the

space p(A*), which can respectively be given as follows:

(A = {:1: cw: (gn_(x)>°° € N(A)},

n n=1

In addition, by using (1.1.2), we get

A (”"(“””)) - %A(Jn@)) + A(%)an_l(@ _ T onal®)

n n  n(n—1)
which shows that both above two formulae of p(A*) are equivalent to each others.
Further, let’s take the sequence x = (2k) € ¢(A). Then A(zy) = 2 for all k& and so
limy 00 A(xr) = 2. On other side, we have o,(x) = n(n + 1) and so A,(z) = n +1
for all n. Thus, we get A,(z) = 1 for all n > 1 and hence lim,,_,o A,(z) = 1 which
means that o € ¢(A%) (we may note that: although z € ¢(A) and z € ¢(A%), but

limy, 00 A(2y,) # limy, oo ]\n(:z:))

From Example 2.2.3, it must be noted that the matrix A does not preserve the
limits of convergent difference sequences. This leads us to introduce the following new

concept* of reqularity of A over ¢(A) as in the following definition:

*This concept can be generalized for two triangles (or two infinite matrices).
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Definition 2.2.4 We say that the matriz A is reqular over ¢(A) if limy, o0 An(z) =

limy, 00 A(zy,) for every x € c(A).

Obviously, we note that A, given in Example 2.2.3, is not regular over ¢(A) (also,
some other examples will be given in next chapter and it will be shown that the
regularity of A over c(A) is depending on its own \). Now, we may begin with proving

some main results which are essential in the text.

Theorem 2.2.5 The \-difference spaces co(A*), c(A*) and lo(A*) are BK spaces

with the norm || - [|ax defined, for every sequence x in these spaces, by

An(x)‘ = sup

n

lz]lar = 1A (@) lloc = sup An(2) = Apa ()]

Proof. Since ¢y, ¢ and ¢, are BK spaces with their natural norm || - || (by (1) of
Lemma 1.3.2) and A is a triangle; it follows by (2) of Lemma 1.3.7 that the matrix
domains of A in the spaces ¢, ¢ and {, are BK spaces with the norm || - ||; given
by ||lzl|z = [|A(2)]|es = ||z||ar. Thus, from (2.2.8) of Definition 2.2.2, we deduce that

co(AY), c(A*) and £, (AY) are BK spaces with the norm || - [|ax. O

Remark 2.2.6 It maybe noted that Theorem 2.2.5 can be proved by using Definition
2.2.1, where co(AY), c(A*) and £, (A*) are respectively the matrix domains of the
triangle A in the BK spaces ¢y(A), ¢(A) and £ (A) with their norm || - ||a (by (2) of
Lemma 1.3.2). Hence cy(A*), c(A*) and £ (A*) are BK spaces with the norm || - |[o
given by [zl = [A(@)]la = [AA(2))lle = [A@)lloc = [z]lar (as AA = A by (2.2.7)).

Therefore ||z]|ax = |A(@)]|oo = ||A(z)||a for every x in the A-difference spaces.

Theorem 2.2.7 The \-difference spaces co(A*), c(AN) and Lo (A*) are isometrically

o

linear-isomorphic to the spaces cy, ¢ and l, respectively. That is cO(A)‘) = ¢,
c(AN) 2 ¢ and lo(AN) 22 (.
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Proof. To show that p(A*) = u, we will prove the existence of a linear operator
between p(A*) and p which is bijective and norm-preserving, where u = cg, ¢ or /.
For this, we define the mapping A : (A*) — u by @ +— A(z) for all z € u(A*). Then,
this mapping is well-defined by (2.2.8) which is clearly a linear operator. Also, it is
easy to see that /~\(x) = 0 implies z = 0 which means that A is injective. Further, to

show that A is surjective, let y € w and define the sequence z = () by

ANeow(y)) M 06(Y) — Me—1 0k—1(Y)

Ty = k>1). 2.2.9
1 k k-1
That is T = PV ()\k ;yj_ Ak—1 ;%) (k>1),
where z1 = y; (since A\g = yo = 0). Then, for every n > 1, it follows by (2.2.2) that
M) = L3 0k A = 37 (eoely) — Mer 01s () = 0uly)
An k=1 An k=1

and by using (2.2.7) we get A,(z) = Ap(z) — Ap_y(2) = 0k(y) — 0p_i(y) = yy for
every n > 1 which implies A(z) = y € u (as y € p) and hence = € p(A*). Thus
z € p(A*) such that A(z) = y. This shows that A is surjective and hence A is a
linear isomorphism. Finally, from Theorem 2.2.5, we have ||A(z)||,, = ||z]/a» for all
z € p(A*) which means that A is norm-preserving, and so A is a linear bijection which

preserves the norm. Therefore, we deduce that p(A*) = i and we have done. O

Corollary 2.2.8 The M-difference sequence spaces co(A?), c(AY) and l.(AY) are

isometrically linear-isomorphic to the usual difference spaces co(A), c(A) and lo(A),

1%

respectively. That is co(AY) = co(A), c¢(A*) 2 c(A) and lo(AY) 2 (o (A).

Proof. It is immediate by combining Lemma 2.1.1 with Theorem 2.2.7. |

Remark 2.2.9 The isomorphic relations u(A*) 2 1 have very important consequences

and it will frequently be used throughout. For instance, we may note the following:
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(1) The matrix operator A : pu(A*Y) — g is an isometry linear isomorphism, and this

implies the continuity of the matrix operator A which will be used in the next section.

(2) For every x € u(A%), there exists a unique sequence y € u connected with z by
y = A(z) and so z = A(Aa(y))/A(N). Conversely, for every y € p, there exists a

unique sequence = € pu(A*) given by z = A(Ao(y))/A(N) and so y = A(z).
Furthermore, we have the following results characterizing the sequences in u(A?*).

Corollary 2.2.10 We have the following:
(1) If 2 € Lo (AY); then (A, (x)/n) € lo.
(2) If z € c(AM); then (An(x)/n) € ¢ and limy,_ oo Ap(2) = limy, o0 An(z) /1.

(3) In particular, if x € co(A*); then (A,(z)/n) € co.

Proof. This fact follows from (1) and (2) of Lemma 1.3.4 (since x € u(A*) implies

that A(x) € u(A)). O

Corollary 2.2.11 We have the following facts:
(1) = € loo(AY) if and only if (An(7)/n) € b and (n A(A,(2)/n)) € loo.
(2) x € c(AY) if and only if (A,(x)/n) € ¢ and (n A(A,(x)/n)) € co.

(3) x € co(AN) if and only if (A (z)/n) € ¢o and (n A(A,(z)/n)) € .

Proof. This result is an immediate consequence of Theorem 2.1.7 (since x € u(A?) if

and only if A(z) € u(A)). O

At the end of this section, we give an example to show that the new A-difference
spaces (in some particular cases of the sequence \) are totally different from the related
classical sequence spaces and other \-sequence spaces. That is, each one of the spaces

co(A*), c(AY) or £o(A?) is totally different from all the spaces ¢y, ¢, lo, 3, ¢, £,
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co(A), ¢(A), loo(A), cy(A), M(A) and €2 (A). For this, we shall use our terminologies
used Example 2.1.6. That is, we will use the symbol u to denote any of the spaces ¢y,
¢ or U, and so p(A) stands for the respective one of the spaces co(A), ¢(A) or oo (A)
while p* is the corresponding space of ¢y, ¢* or £ and hence p(A*) is the respective
one of the spaces cy(A%), c(A*) or £, (A*), respectively. Also, we assume that fi has
the same meaning of u, that is g is any of the spaces ¢y, ¢ or ¢o (but the equality
p = fi need not be valid). Then, our aim in the following example is to show that some

particular cases of our spaces u(A?*) are different from all i, i(A), @* and g*(A).

Example 2.2.12 Consider the spaces p(A?*) in the particular case of the sequence
A = (\) given by A\, = (228 —1)/22%=1 (k > 1) which is a strictly increasing sequence

of positive real numbers. Then A(\;) = 3/2%~1 (k > 1) and for any = € w we have

_ n
2277, 1 3 Tk

An(z) = Ap(z) — Ap_i(2) and A, (z) = T Z o1 (n>1).

k=1

Also, consider the unbounded sequence z = (x) given by x, = 2% 1 (vVk — vk — 1)

for all £ > 1. Then, it can easily be shown that

An<x>:g<¢‘—\/ﬁ+z2\/ﬁ m) (n>1)

n_1 222_
which shows that A(z) € ¢y. Thus € co(A*) and hence z € u(A*) (since co(AY) C
c(AN) C €oo(AY)). But, it is clear that z & lo and so x & ji (as i C {5 by Lemma
1.3.1). Thus, we have z € u(A*) while z & i and so u(A*) # fi.
On other side, it is obvious that A(z) & ¢ and hence x ¢ ¢2 which means that

x & i (as it C ) by (1) of Lemma 1.3.15). Thus pu(A*) # .

Further, for every k > 1, it can easily be seen that vVEk+vE — 1 > (Vk + 1+Vk ) /2
and hence vk — vk — 1 < 2(vk + 1—+/k ) which implies A(z1) > 22(VE+ 1—Vk)
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and so A(xg) > /2 — oo (as kK — o0) as well as A, (A(x)) > Ay (2)/2 =
(as m — 00). Thus A(x) ¢ fy and A(x) ¢ .. Hence, we deduce that z & (,(A) as
well as z ¢ (2 (A) (by using (2.2.3)). This implies that x € ji(A) and x € p*(A) which
means that g(A*) # i(A) as well as u(AY) # g (A).

Therefore, we conclude that each of the spaces u(A?) is totally different from all

the spaces i, i(A), i* and g*(A).

2.3 Schauder Basis

In the last section, we will construct the Schauder bases for the A-difference spaces
co(A*) and ¢(A*) and conclude their separability while ¢, (A?*) is not separable and
has no Schauder basis.

If a normed sequence space X (or an arbitrary normed spaces X) contains a
sequence (by)52; with the property that for every x € X there exists a unique sequence
()72 of scalars such that lim,, , || — (a1by + asbs + - - - + ayby,)|| = 0; then the
sequence (bg),—, is called a Schauder basis for X (or briefly a basis for X) and the
series ), ; by, which has the sum x is then called the expansion of z with respect to
the given basis, and we then say that z has the unique representation = > | ayby.
For example, Lemma 1.3.3 tells us that the sequence (ey,es,es,--+) is the Schauder
basis for ¢y while (e, eq,eq,---) is the Schauder basis for ¢ (see also Lemma 2.1.2 for
the Schauder bases of ¢o(A) and ¢(A)).

Now, we may begin this section with obtaining the Schauder basis for the space
co(A*) of A-null difference sequences. That is, we shall construct a sequence of points
in the space co(A*) (every term in this sequence is a sequence in co(A%)) to be a
Schauder basis for co(A*) such that every sequence in co(A*) can uniquely be written

as an infinite linear combination of the sequences in this basis.
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Theorem 2.3.1 For each k > 1, define the sequence ep = (e),.)%2, by

0; (n < k),
Ak
by = >
Cnk = Ak'_ Ak—l (n k)) (n/_.l)
1; (n > k).

Then, the sequence (eﬁ):}:l is a Schauder basis for the space co(A*) and every x €

co(A*) has a unique representation in the following form:

r=Y_ Ayx)ep. (2.3.1)

Proof. For each k > 1, it is clear that A,(e}) = 0 for 1 < n < k and A,(e}) = 1

for all n > k and so An(eﬁ) = 0, for all n > 1. Thus /N\(eg) = e, € co and hence

o0

ey € co(A*) for every k > 1. This means that (ei‘)kzl

is a sequence in ¢o(A*). Further,

let x € CO(A)‘) be given and for every positive integer m, we put

2™ = Z Ay(z) e}
k=1

Then, we find that

k=1 k=1
and hence
) 0; (1<n<m),
Ap(z — 2™y =¢
An(7); (n >m)

Now, for any positive real € > 0, there is a positive integer mq such that |A,,(z)] < e

for all m > mgy. Thus, for every m > mg, we find that

lz = 20" o1 = sup R, ()] < sup [A,(2)] e
n>m

n>mo

Therefore, it follows that lim,, o ||z — 2™||a» = 0 which means that z is represented

as in (2.3.1). Thus, it is remaining to show the uniqueness of the representation (2.3.1)
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of . For this, suppose that z = Y 7~ ax ep. Then, we have to show that a;,, = A ()
for all n, which is immediate by operating A, on both sides of (2.3.1) for each n > 1,

where the continuity of A (see (1) of Remark 2.2.9) allows us to obtain that

An(x) = Zak An(eg) = Zak Ok = Qi
k=1 k=1
for all n > 1 and hence the representation (2.3.1) of x is unique. O

Moreover, we have the following result constructing the Schauder basis for the

sequence space c(A*) of A\-convergent difference sequences.

Theorem 2.3.2 The sequence (e’\, e}, ey, - ) is a Schauder basis for the space c(A*)

and every x € ¢(A*) has a unique representation in the following form.:

r=Le+ i (Ak(x) - L) e, (2.3.2)

is as in Theorem 2.3.1 and € is the

where L = lim,, /N\n(x), the sequence (62)20_

=1

following sequence:

Y nA,— (=1 X1\
B )\n - /\n—l

n=1
Proof. By using (2.2.2), we get A,(e*) = n and so A, (e*) = 1 for all n which yields that
A(e*) = e € cand hence e* € ¢(A*). This, together with e} € ¢o(A*) C ¢(A*) for all k,
implies that that (e*,e7, €3, ) is a sequence in ¢(A*). Also, let z € ¢(A*) be given.
Then A(z) € ¢ which means the convergence of the sequence A(x) to a unique limit, say
L = lim,,_,« An(x) Thus, by taking y = z — Le*, we get /~\(y) = /~\(a:) — Le € ¢y and

so y € co(A*). Hence, it follows by Theorem 2.3.1 that y can be uniquely represented

in the following form:

Yy = i[\k(y) e = i (]\k(a:) — LAk(GA)> ep = i_o: </~\k(x) — L) ep.
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Consequently, our x can also be uniquely written as

r=Let +y= Le’\—l—z</~\k(:v)—L) ep
k=1

which proves the unique representation (2.3.2) of  and completes the proof. O

Further, the topological property of separability will be discussed in the next result:

Corollary 2.3.3 We have the following facts:
(1) The spaces co(A*) and c(A*) are separable BK spaces.

(2) The space loo(A*) is a non-separable BK space and has no Schauder basis.

Proof. Since ¢y(A*) and ¢(A*) are BK spaces and so normed spaces having Schauder

bases; this result is immediate by (3) of Lemma 1.3.3. O

Finally, we end this chapter with the following example to apply our results in

Theorems 2.3.1 and 2.3.2 to Schauder bases for the spaces ¢o(A*) and ¢(A?).

Example 2.3.4 Here, we give an example of the unique representation of a single
sequence in a particular case of our spaces co(A*) and ¢(A*). For this, consider the

sequence A = () given by A\, = k(k + 1) for k > 1. Then, for every z € w, we have
- 2 -
Ap(@) = Ap(z) — Ap_y () and A,(z) = CEE) ;kxk (n>1).

Thus, by using Definition 2.2.1, we obtain the following particular cases of the

general spaces of A\-difference sequences:

co(AN) = {x = (xp) : <ﬁ kak> S CO(A)} ,

c(A*) = {x = (xy) : (n(%"‘l) kak) € c(A) } :
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Further, with help of Theorems 2.3.1 and 2.3.2, the Schauder bases for these two

spaces are respectively the two sequences (61\, ey, €3, - ) and (e et ey, ), where

:(171717'”>7€§:<073/271717”')7
eg=1(0,0,2,1,1,---), e =(0,0,0,5/2, ---), ...etc.
and e* = ((38k—1)/2),_ =(1,5/2,4,11/2, --).

Now, consider the sequence y = (y) € co(AY) defined by y, = (k+1)VE—(k—1)vVk — 1

for all £ > 1. Then, we have

Auly)=2vn and Ru(y) =2(Vn—vVa—1) (n>1).

Thus, our sequence y has the unique representation
o
=2 Z(\/ﬁ—\/n—l)eﬁ
n=1

with respect to Schauder basis (e))) of the space co(A*).
In addition, if we define x = (zy) by xx = 1 — 3k + y; for £ > 1. Then, we find
that A, () = =2+ A, (y) for all n > 1. Thus 2 € ¢(A*) such that lim,, o A, (z) = —2.

Hence, by applying Theorem 2.3.2, the sequence x has the unique representation

o0
r=—2e"+2 Z(\/ﬁ—\/n—l—i-l)ez
n=1

with respect to the Schauder basis (e’\, e}, ey, - ) of the space c(A*).
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Chapter 3
SOME INCLUSION RELATIONS




3 SOME INCLUSION RELATIONS

In the present chapter, we will deduce some inclusion relations between the new A-
difference spaces and derive some other inclusion relations between these spaces and
the classical sequence spaces. This chapter is divided into three sections, the first is
devoted to derive some basic inclusion relations, the second is for proving some pre-
liminary results to be used in deriving our main results in last section. The materials
of this chapter are part of our research paper* which has been published in Albaydha

Univ. J., and presented in the 2"¢ Conference of Albaydha University on 2021.

3.1 Basic Results

In this section, we establish some basic inclusion relations concerning with the new

M-difference spaces co(A?), c(A*Y) and £ (AMY).
Lemma 3.1.1 The inclusions co(AY) C c¢(A*) C Lo (AN) strictly hold.

Proof. These inclusions are immediate from the inclusions ¢y C ¢ C {4 (see Lemma
1.3.1). To see that, let z € ¢o(A*). Then A(z) € ¢y and so A(z) € ¢ which means that
x € c(AY). Thus ¢o(A*) C ¢(A*) and we can similarly prove that c(A*) C £ (AM).

Also, to show that these inclusions are strict, we define two sequences x and y by

T —

ke — (k—1) Ay (=% X+ Nes
d = k>1).
Ak — Ak—1 o vk 2 Ak — Ak—1 (k=1)

*A.K. Noman and O.H. Al-Sabri, On the new A-difference spaces of convergent and bounded
sequences, Albaydha Univ. J., 3(2) (2021), 18-30.
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Then, for every n > 1, it can be easily seen that

n

An(z) = Ain S (ke — (= DA r) = n,
M) = 5 SR+ ) =

and so ]\n (JZ) = An (x>_An—1 (l‘) =1 and An (y) = An (y)_An—l (y) = (_l)n (TL > 1)
Thus A, (z) = e € ¢\ ¢ and A, (y) € lo \ ¢ which means that z € ¢(A*)\ ¢o(A*) and

Y € loo(AM)\ ¢(A*). This ends the proof. O
Lemma 3.1.2 The inclusions ¢ C co(A*) and ¢* C c¢o(A*) strictly hold.

Proof. First, we show that ¢* C c¢o(A*). For this, take any = € ¢*. Then, we have
A(z) € ¢ and so A (z) = (A, (z) — A1 (2)) € ¢ which means that = € ¢;(A*) and
hence ¢* C ¢o(A*). Also, to show that this inclusion is strict, define z = (z;,) by

B MVE = NV — 1
Ak — Ak—1

Tk (k>1).

Then A, (z) = /n and so A(z) = (/n) ¢ ¢ which means that z ¢ ¢, but
Az) = (Vn—+/n—1) € ¢ and hence = € co(A*). Thus z € ¢o(A*) \ ¢ and so the
inclusion ¢* C co(A%) is strict. Besides, since ¢ C ¢* (by (2) of Lemma 1.3.15); we

deduce the other strict inclusion and this completes the proof. O

Corollary 3.1.3 We have the following facts:

(1) The inclusions cy C co(A*), * C c(AY) and 02, C lo(A*) strictly hold.

(2) The inclusions co C co(A*), ¢ C c(AY) and s C loo(A*) strictly hold.

Proof. (1) The first two inclusions follow from Lemmas 1.3.15 and 3.1.2, and the third
inclusion can be proved by the same way used in the proof of Lemma 3.1.2.
(2) The first inclusion follows from Lemma 3.1.2 (as ¢y C ¢) and the second two

inclusions follow from part (1) (as ¢ C ¢* and £, C €2 by Lemma 1.3.15). O
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Corollary 3.1.4 Let 1 < p < oo. Then, we have the following:

(1) All the spaces cso, cs, Ly, 61’} and bv, are strictly included in co(A*).

(2) The inclusion bs C Lo (A*) strictly holds.

Proof. This result can similarly be proved as Corollary 3.1.3 by using the help of

Lemmas 1.3.1, 1.3.15 and 3.1.2. O

Remark 3.1.5 The spaces £y, and co(A*) overlap (since ¢ C fo N co(A?)), but
co(A*) cannot be included in £4,. To see that, we have already obtained an unbounded
sequence x € ¢o(A) \ Lo (see the proof of Lemma 3.1.2 and note that x;, > vk for all
k > 1). On other side, although the space ¢, cannot be included in ¢y(A) (see (1)
of Remark 2.1.5), but it can be strictly included in ¢y(A*) for some particular \ (as

shown in the next theorem).

Theorem 3.1.6 The inclusion {o, C co(A*) strictly holds <= lim, oo A1/ A\p = 1

< limy, 00 An/A(N,) = 0.

Proof. Since A is a triangle; we can use (1) of Lemma 1.3.7 to deduce that

loo C co(AY) <= 1€ co(A?) for all x € £,
— A(z) €y forall z €l
— A€ (le,co) (Ais a triangle).
That is, the inclusion £, C ¢o(A*) holds if and only if Ae (Lo, Co). This together with
(1) of Lemma 1.3.11 lead us to obtain that fo, C co(A*) <= lim, 400 Soo0, [k = 0.
On other side, for every n > 1, it follows by (2.2.4) that

) n—1
1 1 A — Aot An—1
p— _—— _— _ —_—m p— 1 —_ .
> (An_l /\n> o = A) + = 2( A )

k=1 k=1

Thus, we find that lim, ..o > oo, |5\nk| = 0 if and only if lim, oo Ap_1/Ap = 1.

S\nk

Therefore, the inclusion £y, C co(A*) holds if and only if lim, e Ap_1/A, = 1. Also,
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this inclusion must be strict, since the equality cannot be satisfied by Remark 3.1.5.
Finally, to conclude the proof, it must be noted that

lmy, oo A1 /A = 1 <= lim,, oo A(Nn) /A = 0 <= lim,, 00 A\ /A(N,) = 00. O

Theorem 3.1.7 We have the following:

(1) The inclusion €3, N c(AY) C co(A*) strictly holds.
(2) The equality (2, N c(AY) = €2 N co(AN) holds.

(3) The inclusion ¢ C €3 N co(A*) strictly holds.

Proof. This result is immediate by Lemma 2.1.4. To see that, we have the following:

For (1), take any = € A N c(AY). Then z € £} as well as © € ¢(A*). Thus
A(z) € U, and A(x) € ¢(A). This implies that A(x) € £y, Ne(A) and so A(z) € ¢o(A)
(by (1) of Lemma 2.1.4). Thus z € co(A*) and so £, N c¢(A*) C ¢o(A*) which is a
strict inclusion by the example given in the proof of Lemma 3.1.2 (x € ¢o(AY) \ £2).

Similarly, the equality in part (2) can be proved by using the corresponding equality
given in (2) of Lemma 2.1.4.

To prove (3), we have ¢* C ¢2 (by (1) of Lemma 1.3.15) as well as ¢* C ¢o(A?)
(by Lemma 3.1.2). Thus, we deduce the inclusion ¢* C €2 Nco(A*Y). To show that this
inclusion is strict, there must exist a sequence z € o, Ncy(A) such that z ¢ ¢ (since the
inclusion ¢ C lo, Ne(A) is strict by (3) of Lemma 2.1.4). This implies that z € ¢, \ ¢
and A(z) € c¢g. Now, define a sequence z in terms of z by z;, = A(Apzr)/A(Ag) for all k.
Then, by using (2.2.2), we find that A(z) = z € £y \ ¢ and so A(z) = A(2) € ¢p. Thus,
it follows that = € X \ ¢* and x € ¢y(A*). Therefore x € £ N co(A*) while z ¢
which shows that the inclusion ¢* C ¢2 N cy(A?) is strict and this stage completes the

proof of our result. O
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Corollary 3.1.8 We have the following:

(1) The inclusion ls N c(A) C co(A*) strictly holds.
(2) The equality lo N c(AY) = Lo N co(AN) holds.

(3) Lo C (AN = Iy C cp(AY) <= lim, oo A\n/A(N,) = 00.

Proof. (1) Since £, C £, (by (2) of Lemma 1.3.15); we have (o, Nc(AY) C £ Nec(AY)
and so we deduce the strict inclusion £, N c¢(A*) C co(A*) (by (1) of Theorem 3.1.7).
(2) Since £o, N2 = l; the given equality can immediately be obtained by taking
the intersection of £, with both sides of the equality in (2) of Theorem 3.1.7.
(3) By using part (2) with Theorem 3.1.6, we find that
loo C c(AY) <= Lo Ne(AY) = Uy
= Uy Neg(AY) = Uy
= Uy C co(AY)
<~ lim \,/A(\,) =

n—0o0

which ends the proof of this result. O

3.2 Preliminary Results

In this section, we will derive some preliminaries and define some terminologies
which will be used in proving the main results in the next section.
We may begin with the following result which gives another formula for the A-

transform of any sequence x € w.

Lemma 3.2.1 For every sequence x € w, we have the following equality:

A, (z) = (Anl_l —%)Zxk_lam) (n>2).
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Proof. Let x € w. Then, for every n > 2, we have /N\n(x) = A, () — Ay (z) and by

using (2.2.2) we find that

n n—1
~ 1 1
An An—l
k=1 k=1
hich leads us to derive the following
< 1 Z” 1 O AN,
An(IL’) = )\—n A()\k) T — )\n,1 A()\k) T + )\i1> n

>\n)\n—1 k=1 >\n>\n—1 1
A <
W ; M1 (Th — Tp—1)
)\n )\n—l &
- ( Aot ) 2 e A )
k=2
1 1\ «
- (An_l N A_n) 2 et A (o)
k=2
which proves the given relation and concludes the proof. O

As we have seen in the proof of above lemma, we are in need for more simplicity in
notations. That is, we need to quoting some additional conventions and terminologies

to be used in the sequel. So, we define the real sequences u = (ug) and v = (v;) by

Ae Ak and vy — e V|
AW M=ot AOw) M=

(k>1). (3.2.1)

U =

Then, it is obvious that u; = 1 and w; > 1 for all £ > 1 while v; = 0 and v, > 0
for all k > 1. Thus, by using the equality given in Lemma 3.2.1, the A-transform of

any sequence r € w is given by

~ 1
Ay () = ZM 1 A(xy)

W ZM Aw) (=2, (322)

n 1Un
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Remark 3.2.2 The three real sequences (k)72,, u = (ux)52, and v = (vg)52, will
play important roles in the remaining part of this study and will frequently be used

throughout. Besides, by using (3.2.2), the A-transform of the sequence (k) is given by

n n

M= ——S M= ——Sn0 (22 (3.2.3)

)\nvn k=9 )\n—lun =2

Further, by taking y = (1,1,1,---) € ¢ in (2.2.9), we note by (2) of Remark 2.2.9

that (A(kMg)/A(N) )22, € ¢(A*) and we have

AR .
W(Sag )= = a2
% =k + vy (k>1). (3.2.5)

Now, we may prove the following preliminaries:

Lemma 3.2.3 We have the following equalities:

(1) up =1+ (k>1),
(2) Alug) = A(vg) (k= 2),
(3) An(u) = An(v) (n>2),
(4) Ap(k4uv) =1 (n>1),
(5) An(k) +An(v) =1 (n>1).

Proof. For (1), we may note that A\, = A(\g)+Ax—1 for all k£ and then by using (3.2.1)
we get the equality in (1). Also, part (2) is immediate from (1) by operating A on
both sides and noting that A(1,1,1,---) = (1,0,0,---), that is A(e) = e;. Besides, the
equality in part (3) follows from (3.2.2) with help of (2). Further, part (4) is obtained
by combining (3.2.4) and (3.2.5). Finally, part (5) is immediate from (4) by the linear

property of the matrix operator A. O
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Lemma 3.2.4 We have the following inequalities:

(1) )\k_1 A(Uk) S A(Akvk) (k’ Z 1),

(2)
(3) 0 <A, (k) <2 (n>1).

An(m\ <1 (n>1),

Proof. To prove (1), let £ > 1. Then, by using (1.1.2) and then (3.2.1), we find that
A()\kvk) = Vg A()\k) + Ak,1A<Uk) = >\k71 + )\kflA(Uk) Z )\k,1A<Uk).
For (2), we have Ay(v) = v; = 0 and so the given inequality is true for n = 1.

Also, for n > 2, we can use (3.2.2) and part (1) to obtain that

- 1 n
An(’U) = o Z :2)\!@71 A(’Uk)
1 n
< o A YY)
_ A
 Aatn k=2 (i)
1
= o (Avn)  (as v =0)
= 1.

Finally, to prove (3), we have A; (k) = 1 and this together with (3.2.3) lead us to
deduce that A, (k) > 0 for all n > 1 and so the given inequality is immediate by (5) of

Lemma 3.2.3 with help of part (2), where

R (k) =

A, (k;)‘ — )1 —An(v)‘ <1+

An(v)‘ <2 0

Lemma 3.2.5 We have the following facts:
(1) (k) € loo(AY), v € Lo (AY) and u € Loo(AY).
(2) A(k+w) =e€c andso (k+w) € c(AY).

(3) (k) € c(AY) = v € c(AY).
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Proof. Part (1) is obtained from (2) and (3) of Lemma 3.2.4 with help of part (3) of
Lemma 3.2.3. Also, part (2) is immediate by (4) of Lemma 3.2.3, where A, (k4wv;) = 1
for all n which means that A(k +v;) = e € ¢ and so (k + vy,) € ¢(AY).

Finally, part (3) is an immediate consequence of part (2). To see that, we have
(k) +v = (k +v) € ¢(A"). Thus, we deduce the given equivalence (in part (3))
from the properties of any linear space. In other words, from (5) of Lemma 3.2.3, we
find that A(k) + A(v) = e € ¢. Thus A(k) € ¢ <= A(v) € ¢ which can equivalently
be written as (k) € ¢(A*) <= v € ¢(A?) (note that: we will show, in next section,
that both sequences A(k) and A(v) can together be not in ¢ while their summation

A(k) + A(v) always belongs to c). O

Lemma 3.2.6 We have the following equivalences:

(1) u € lo <= v € Ly (the same is true for c instead of {w).
(2) (ug/k) € c <= (vx/k) € ¢ (in such case: limy_,o ug/k = limy_,oo vx/k > 0).
(3) limg oo up/k =00 <= limg_,o vx/k = 00.

(4) u € c(A) <= vec(A) (in such case: limy_oo A(ug) = limg_0o A(vg) > 0).

Proof. The given equivalences in parts (1), (2) and (3) are immediate by (1) of Lemma
3.2.3 while the equivalence in part (4) follows from (2) of Lemma 3.2.3.

On other side, in part (2), if (ux/k) € c and so (vg/k) € ¢; then their limits must be
equal to each others. To see that, from (1) of Lemma 3.2.3, we have uy/k = 1/k+v;/k
and (1/k) € ¢o. Also, since uy, > 0 and vy, > 0 for all k; it follows that limy_,o, ug/k > 0
as well as limg_,, vx/k > 0.

Similarly, in part (4), if u € ¢(A) and so v € ¢(A); then limy o Au) =

limy 00 ug/k as well as limg_,oo A(vg) = limg_00 v /k (by (2) of Lemma 1.3.4). Thus,
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we deduce that limy_,o A(ug) > 0 and limg_,oo A(vg) > 0 (by part (2)) and these two

limits must be equal to each others (by (2) of Lemma 3.2.3). O

Theorem 3.2.7 We have the following facts:

(1) u € c(A*) < v e c(A) (in such case: lim,, . An(u) = lim, 00 Ap(v)).
(2) Ifv € c(AY); then 0 < lim, oo Ap(v) < 1 and we have

lim A, (k) =1— lim A,(v) (the same is true for u instead of v).

n—oo n—oo

(3) If (k) € ¢(AM); then 0 < limy,_o0 Ap(k) < 1 and we have

lim A,(v) =1 — lim A,(k) (the same is true for u instead of v).
n—oo n—oo

(4) Au)ec <= Alw)ec < Ak) ec.

Proof. (1) Since A,(u) = A,(v) for all n > 2 (by (3) of Lemma 3.2.3); we deduce
that A(u) € ¢ <= A(v) € ¢, and their limits must be equal to each others, i.e.
lim,, oo /~\n(u) = lim,, oo An(v) Hence, part (1) is proved.

(2) Suppose that v € ¢(A*), i.e. A(v) € c. Then lim,_,e0 Ay (v) = limy,_,o0 Ay (v) /0
(by (2) of Corollary 2.2.10). But v, > 0 for all £ and it follows by (2.2.2) that A, (v) >0
for all n and hence lim,, o, A, (v)/n > 0 which implies that lim,, ., A, (v) > 0. Besides,
by using (2) of Lemma 3.2.4, we deduce that lim,_ . Ap(v) < lim, e [An(v)] < 1.
Thus, it follows that 0 < lim,_ A, (v) < 1. Also, since v € ¢(AY); we get (k) € ¢(A*)
(by (3) of Lemma 3.2.5) such that 7111_1)1010 An(k) = 1—nli_r}101o An(v) (by (5) of Lemma 3.2.3).

(3) Assume that (k) € c(A*). Then, it follows, by (3) of Lemma 3.2.5, that
v € ¢(A*). Therefore, by using part (2), we deduce that 0 < lim,_. A, (k) < 1 and
limy, o0 Ap(v) = 1 — limy, 00 Ay () (in parts (2) and (3), v can be replaced by w).

(4) By combining (3) of Lemma 3.2.5 with part (1), we conclude that u € ¢(A*) <=
v € ¢(AY) <= (k) € ¢(A*) which can equivalently be written as A(u) € ¢ <= A(v) €

¢ <= A(k) € c and this completes the proof. O
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Remark 3.2.8 From previous results, we may note that there exists a similarity or
an equivalence between the sequences u and v with respect to their belong to any of
the spaces ¢, £, ¢(A) or ¢(A*). So, it is useful to use a common symbol for these two
sequences. That is, we will use the sequence ¢t = (t;) to stand for any of the sequences
u or v (we may note that vy <t < uy for all k). Thus, we can replace v (or u) by t

in Theorem 3.2.7.

Moreover, for any sequence z = (x,,), we have the following equality:
Ty — N () = v\ () (n>1) (3.2.6)

which can be obtained from that equality given in part (2) of Lemma 1.3.14 by using

(2.2.7) and (3.2.1). Besides, by using (2.2.2) and (3.2.2), we find (for every n > 2) that

A Az)) = Ain S M () = Ain S M1 (20) = v An(a).

That is A, (v A(x)) = v, Ay (z) (n > 2) which is true for n =1 (as v; = 0) and by

combining this equality with (3.2.6) we obtain that
Ty — N () = v, A () = Ay (v A(x)) (n>1)

and by operating A on both sides, we get

Axy,) — Ap(2) = A(v Ay () = Ap(vA(z)) (n>1). (3.2.7)

On other side, by noting that u,, = 1 + v, for all n (by (1) of Lemma 3.2.3), the

equality (3.2.6) can be rewritten, for any sequence z = (x,,), as follows

Ty = v\ () + Ap(z) or x, = u,Ap(x) + Apq(2)

from which we can respectively derive the following useful identities:
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n inun = Aule) - n fun (An(”f) - A"_Tlm) (n=1). (3.2.9)

Now, by using the convention mentioned in Remark 3.2.8, we prove the following

theorem which is analogous to Lemma 1.3.4.

Theorem 3.2.9 Let t = (t,) be any of the sequences u = (u,) or v = (v,). Then, for

any sequence x = (x,), we have the following facts:
(1) If 2 € oo (AN); then (z,/(n+1,)) € loo.
(2) If v € ¢(AY); then (x,/(n+1t,)) € ¢ and lim,, An(x) = limy, o0 Tn/(n+ ty,).

(3) In particular, if v € co(AY); then (x,/(n +t,)) € co.

Proof. At the beginning, we may note that the sequences (n/(n+wv,)) and (n/(n+u,))
are bounded (i.e. (n/(n+v,)) € ls and (n/(n + uy,)) € ly). Also, it is obvious that
((n—1)/n) € ¢\ ¢y, where lim,,_,(n — 1)/n = 1. Thus, we have the following:

To prove (1), let 2 € loo(A*) which means that A(x) € £, and so (A, (x)/n) € lo
(by (1) of Corollary 2.2.10). Then, it follows by (3.2.8) that (z,/(n+v,)) € ls. Also,
since (Ap—1(x)/n) € lw; it follows by (3.2.9) that (x,/(n + u,)) € ls. This proves (1),
as t is either u or v (see Remark 3.2.8).

For (2), let = € ¢(A*) which means that A(z) € ¢ and so (A(z)/n) € ¢ such
that lim, e Ap(z) = lim,_eo An(x)/n (by (2) of Corollary 2.2.10). Then, we get
(An(z) — Ap(z)/n) € ¢y and since (n/(n + v,)) € loo; we immediately deduce that
limy, o0 (n/ (14 v,)) (A () — An(2) /n) = 0. Therefore, by passing to the limits in both

sides of (3.2.8) as n — oo, we get lim,, o, A, (z) = lim, o ©,,/(n + v,). Also, we have
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n— 00 n n— 00 n

A, —1\ A,- A, ~
lim An-a() = lim (n ) n1(2) = lim — 1<f> = lim A, ().

Therefore, by using (3.2.9), we similarly get limy, oo Ap(2) = limy, 00 T, /(0 + uy)

which proves (2). Finally, part (3) is immediate by (2) and we have done. O

In addition, in the light of Theorem 3.2.9, we have the following consequences as

important particular cases concerning with the sequences u, v and (k).
Corollary 3.2.10 Let t be either u or v. Then, we have the following facts:

(1) If t € ¢(AY); then (t,/(n+t,)) € ¢ and lim, o0 Ay (t) = limy, o0 /(0 + t,,).

(2) If (k) € c(AY); then (n/(n+t,)) € ¢ and lim, o0 Ay (k) = lim, oo /(0 + t,).
Proof. It is immediate by taking z = ¢ and = = (k) in Theorem 3.2.9. O
Corollary 3.2.11 Assume that t = (t,) is either u = (u,) or v = (v,). If A(t) € ¢;

then the real sequence (t,/n) is not oscillated (i.e., either (t,/n) € ¢ or t,/n — oo as

n — 00). Further, in such case, we have

- t -
lim A,(t) = lim _tn/n_ and  lim A, (k) = lim ———- (3.2.10)

n—»00 n—oo 1 4+t,/n n—00 n—oo 1 +t,/n
Proof. Suppose that A(t) € ¢. Then, it follows by Theorem 3.2.7 that A(k) € ¢ such
that 0 < lim,,_,e0 An(t) < 1and 0 < lim,,—s0 An(k) < 1. Besides, the limits given in
(3.2.10) are immediate by Corollary 3.2.10. Also, since these limits exist; we deduce

that either (¢,/n) € c or t,/n — oo as n — oo, that is (¢,/n) cannot be oscillated. O
Corollary 3.2.12 Let t be either u or v. Then, we have the following facts:

(1) A(k) € ¢g <= lim,_o0 tp/n = 0.

(2) A(t) € g = limy_ootn/n =0.

(3) A(t) € cp — A(t) € (.
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Proof. (1) If A(k) € ¢y and so A(t) € ¢; then it follows by (3.2.10) of Corollary 3.2.11
that (1/(1+t,/n)) € co which implies that ¢, /n — oo as n — co. Conversely, suppose
that lim,, o t,/n = co. Then lim,,_,., n/t, = 0, that is (n/t,)>2, € ¢y. Besides, since
A is increasing; we get > ¢, Ag_1 = ZZ;% A < (n—=1)\1 < n\, 4 for all n > 2. So,
by using (3.2.3), we obtain that A, (k) < n/u, < n/t, and so 0 < A, (k) < n/t, for all
n > 2. Therefore, by passing to the limits as n — oo, we get lim,, ]\n(k) = 0 which
means that A(k) € c.

For (2), suppose that A(t) € ¢y and so lim,,_,. A, (k) = 1 by (3) of Theorem 3.2.7.
Then, from (3.2.10) of Corollary 3.2.11 we deduce that lim,,,», 1/(1+1%,/n) = 1 which
implies that lim, . t,/n = 0.

Lastly, to prove (3), assume that A(t) € ¢y. Then, for every positive real number

¢ > 0 there is an integer k; > 1 such that |A(ty)| < ¢/4 for all & > ki. Also, let

M = 21121:2 Me—1|A(tg)]. Then, for every n > ki, we can use (3.2.2) and (3.2.3) to get

. 1
B < 5 DAl
€ n
W (M+Z > A“)

AN
>
L=
3
/é\

+
] o

(]
>~

T
~_

_'_
<o(m,+<
— n 4 Y
where M, = M/ >}, A\_1 for all n and A, (k) < 2 for evey n > 1 (by (3) of Lemma

3.2.4). On other side, since lim, oo Y ,_o Ag—1 = 00; we have (M,) € ¢o. Thus,

there must exist an integer ks > 1 such that M, < €/4 for all n > ky. Finally, let

ko = max{ki, ka}. Then, for every n > ko, we find that An(t)‘ < 2(e/d+€/4) = e

That is

]\n(t)‘ < e for all n > ko and so A(t) € . O
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Corollary 3.2.13 Assume that t = (t,) is either u = (uy,) or v = (v,). If the real
sequence A(t) is not oscillated (i.e., either A(t) € ¢ or A(t,) — 00 as n — o0); then

A(t) € c. Further, in such case, we have

L A o
dim An(t) = lim == and i Aa(k) = Jim s (3210)

Proof. Suppose that A(t) is not oscillated. Then limy o A(ty) = limy oo tx/k > 0
and so we have two distinct cases: either A(t) € ¢ or A(ty) — oo as k — oc.

First, let’s consider the case A(t) € ¢. Then A(v) € ¢ by (4) of Lemma 3.2.6.
Also, let L = limg_,o, A(vg), where L > 0. Then, we have (A(vx) — L) € ¢ and so
limy oo A(vy — Lk) = 0. Thus, by following the same technique used in the proof
of pgart (3) of Corollary 3.2.12, we can similarly show that lim,, An(vk — Lk) =
0 and hence lim,_oo( A, (v) — LA, (k)) = 0 which can equivalently be rewritten as

limy, 00 ( (14+ L)A,(v) = L) = 0 (as A, (k) = 1 — A, (v) for all n by (5) of Lemma 3.2.3).

Therefore, we deduce that A(v) € ¢ and so A(k) € ¢ with limits given by

.= L . A(vy,)

lim A,(v) = —— = lim ————

i An(0) = 77 = i R
. . . 1
am Ank) =1 =l A(v) = 777 = I 5300

and since A(v,) = A(ty), Ap(v) = A, (t) for n > 1; we get A(t) € ¢ and obtain (3.2.11).
Next, if limg_,oo A(tx) = 0o; then limy_,, tx/k = oo (by (3) of Lemma 1.3.4). Thus

A(k) € ¢ (by (1) of Corollary 3.2.12) and so lim,_,. A, (t) = 1 which can be obtained

from (3.2.11) an this completes the proof. O

Lastly, combining Corollaries 3.2.11 and 3.2.13 yields the following implications:
A(t) is not oscillated = A(t) € ¢ = (t;/k) is not oscillated,
(ti/k) is oscillated = A(t) ¢ ¢ = A(t) is oscillated

but the converse of each implication is not true as will be shown in the next example.
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Example 3.2.14 Consider the particular sequence A\ = (3,6, 18,36, 108, ---), that is

A = (M) is the sequence defined for all k£ > 1 by

6(k+1)/2
; (k is odd),
Ak = 2
6%/ (k is even).
Then, for every k > 2, we have
3/2; (kis odd), —1/2; (ks odd),
2; (k is even). 1/2; (k is even).

Also, for every n > 1 it can easily be shown that

1 1 .
N - —€<1 ~ e ) : (n is odd),

9 .
€<1 + W> ; (n is even)
which means that A(u) ¢ ¢, where A(u) is oscillated between two limits (namely +1/5)
and so A(k) will also be oscillated (between 4/5 and 6/5). Also, it maybe noted that

u € U and (ug/k) € ¢o while A(u) and A(u) are oscillated.

Example 3.2.15 Let A = (1,2,4,6,9,12,---). That is, for every k > 1, we have

(k+1)%/4; (k is odd), B (k+1)/2; (kisodd),
(k24 2k)/4; (K is oven). TNt 2)2: (s even).

Then, for every n > 1, we find that

1; n is even), . n+1)/(3n); n is even),
py = [ el [/ (e
0; (nisodd). n/(3n+3); (n is odd).

Hence, we have uy/k — 1/2, A, (u) — 1/3 and so A, (k) — 2/3. Also, it must be

noted that u ¢ (o, (u/k) € ¢ and A(u) € ¢ while A(u) is oscillated.
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Example 3.2.16 Let A = (\;) be given by Ay = In(k + 1) for all £ > 1. Then, it can

easily be seen that

In(k)
In(k +1) — In(k)

A(Ag) =In(k+1) —In(k) < and vy = >kln(k) (k>1).

| =

Also, for every n > 2, we find that

Z)\k,l = Zln(k) < (n—=1)In(n) < nln(n) < v,

and it follows by (3.2.3) that A, (k) < 1/, and so 0 < A, (k) < 1/\, for alln > 2. But
1/X\ € ¢o and hence A(k) € ¢ which implies that lim,_., A,(v) = 1. Thus A(v) € ¢,

where v /k — 0o and so vy — 0o (as k — 00).

3.3 Main Results

In this last section, we prove our main results concerning the inclusion relations
between the usual difference spaces and the new A-difference spaces. We essentially
characterize the case in which the inclusions cy(A) C co(AY), ¢(A) C ¢(A*) and
loo(A) C loo(A?) hold, and then we conclude the necessary and sufficient conditions for
their equalities to be satisfied. Also, some important particular cases will be discussed.

At the beginning, we prove the following useful lemma concerning with the matrix

transformations on the same sequence space cg, ¢ or {.

Lemma 3.3.1 Let A = [a,] be an infinite matriz such that lim, o anr, = 0 for every

k > 1. Then, we have the following equivalences:
(1) A€ (loo,les) == A€ (cp,c0) <= SUpP, D oy k] < 00.

(2) A€ (c,c) <= sup, Y oy |ank] < oo and lim,_ oo > pey any ezists.
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Proof. Since lim, ;o anr = 0 for every k& > 1; part (1) is immediate by using the
conditions given in Lemma 1.3.9 and in (3) of Lemma 1.3.11.
Also, part (2) can be obtained from the conditions given in (2) of Lemma 1.3.10

(by noting that conditions (1.3.2) and (1.3.3) are assumed to be satisfied). O

Now, we define a triangle A = [d,,;] as follows:

1 0
0 N

1 1 1 1 1 1
0 A A3 M A2 A3 M )‘3(>\3_/\4>

Then, for every x € w, it follows by using the equality given in Lemma 3.2.1, that

A, (x) = A, (A(z)) for all n > 2 and since Ay (z) = 21 = A(zy) = A1(A(2)); we get

A(z) = A(A(z)) for all # € w. Also, it is clear that lim,_. é,; = 0 and we have

. R . 1 1
Jn = N fim (- ) =00 (k22),
; |ank| = EOO Ank :( L i) En k-1 (n>2).
)\n—l /\n N
=1 =1 s

Thus, by using (3.2.3), we obtain that

lim a,r =0 for every k > 1,

n—oo
Z k| = Z&nk = A, (k) for every n > 1.
k=1 k=1

Hence, by appling Lemma 3.3.1 to our triangle A, we find that

A€ (b, lsy) <= A€ (co, co) <= sup A, (k) < co <= A(k) €ly, (3.3.2)

Ae(c,¢) < lim A, (k) exists < A(k)cec. (3.3.3)
n—oo
Now, by using the usual conventions given in (3.2.1) and Remark 3.2.8, we may

begin with the following main result:
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Theorem 3.3.2 We have the following facts:
(1) The inclusions co(A) C co(A*) and lo(A) C loo(A*) always hold.

(2) The inclusion ¢(A) C ¢(AY) holds if and only if A(t) € ¢ (or equivalently:

A(k) € ¢), where t = (ty,) is either u = (uy) or v = (vg).

Proof. Let p be standing for any of the spaces cg, ¢ or £,. Then, we have u(A) = pu
and so = € p(A) if and only if A(z) € p (by Lemma 2.1.1). Also, the matrices A and
A are triangles such that A (z) = A (A(x)) for all z € w. Thus, by using (1) of Lemma
1.3.7, we deduce the following:
w(A) C u(AY) <= x € u(A*) for all z € u(A)

> A(z) € pu forall z € pu(A)

— A(A(z)) € p for all A(z) € p

= Ay)epforall yepu (y=A(r)

<~

A e (p, ).

Now, to prove (1), we have
loo(A) C U (AY) = A € (loo, lso) as well as co(A) C co(AY) <= A € (o, o)
and it follows by (3.3.2) that
loo(A) CU(AY) = co(A) C co(AY) <= A, (k) € Uy .

But, the condition A (k) € (. is always satisfied by (1) of Lemma 3.2.5. Thus,
the inclusions co(A) C co(AY) and loo(A) C lo(AN) always hold.

Part (2) can similarly be proved, since ¢(A) C ¢(AY) <= A € (c,¢). Thus, it
follows from (3.3.3) that ¢(A) C ¢(AY) <= A € (¢, ¢) <= A (k) € c. Finally, by
using (4) of Theorem 3.2.7, we deduce the following equivalences:

¢(A) C e(AY) <= A(k) €ec <= A(t) ec,
where t is either u or v, and this completes the proof. O
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Corollary 3.3.3 Let t be either u or v. Then, we have the following facts:

(1) If the inclusion c(A) C c(A*) holds; then the real sequence (t,/n) is not oscillated

(i.e., either (t,/n) € ¢ or t,/n — 0o as n — o0) and for every x € ¢(A) we have

lim A,(z) = lim (3.3.4)

(2) If the real sequence A(t) is not oscillated (i.e., either A(t) € c or A(t,) — oo as

n — 00); then the inclusion c(A) C ¢(A*) holds and for every x € c(A) we have

lim A,(z) = lim (3.3.5)

Proof. By using (2) of Theorem 3.3.2, part (1) is immediate by Corollary 3.2.11, and
part (2) follows from Corollary 3.2.13 with help of Corollary 2.1.8 and noting that

z € ¢(A) = lim,, 0 A(z,,) = limy, 00 2, /1 by (2) of Lemma 1.3.4. O

Further, by combining parts (1) and (2) of Corollary 3.3.3, we deduce the following
implications:
A(t) is not oscillated = ¢(A) C ¢(A*) = (t1/k) is not oscillated,
(tx/k) is oscillated = c¢(A) ¢ ¢(AY) = A(t) is oscillated
but the converse of each implication is not true (see Examples 3.2.14 and 3.2.15 with
noting that ¢(A) C ¢(A) < A(t) € ¢).

On other side, we may recall, by Definition 2.2.4, that the regularity of A over c(A)
means that lim,,_, /~\n(a:) = lim, 00 A(x,,) for all z € ¢(A). Thus, the regularity of A
over ¢(A) implies the inclusion ¢(A) C ¢(A*) (but the converse is not true). Also, it is
obvious that A is regular over c(A) if and only if A s regular in the ordinary sense of
regularity, where A is the triangle defined by (3.3.1). Further, we deduce the following

result concerning with the regularity of A over ¢(A).
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Corollary 3.3.4 We have the following facts:

(1) If the inclusion c(A) C c(A*) holds; then for every x € ¢(A) we have
Jim Auge) = ( fim, M) ( fim Aa(h)) (339

(2) A is reqular over c(A) if and only if A(t) € ¢y (or equivalently: A,(k) — 1 as

n — 00), where t is either u or v.

Proof. (1) Suppose that ¢(A) C ¢(A*). Then A(k) € c. But (k) € ¢(A), where
A(k) = 1for all k. Thus, by using (3.3.4) from part (1) of Corollary 3.3.3, it follows that
limy, o0 Ap (k) = limy, 00 1/(1 + t,,/n) (see also Corollary 3.2.11). Again, let = € ¢(A)

be given. Then, from (1) of Corollary 3.3.3, we deduce that

- : : 1 . o
Jim o) =ty 8en)) (i ) = (fimn Ao  fimg Aail)
(2) It is obvious that both of A(t) € ¢ and the regularity of A over ¢(A) imply the

inclusion ¢(A) C ¢(A*). That is, this inclusion is satisfied in both cases of requirement,

and so we can use (3.3.6) from part (1) to deduce that

A is regular over ¢(A) <= lim A, (k) =1 < A(t) € ¢

n—oo

and this stage concludes the proof. O

Corollary 3.3.5 Let t be either u or v. Then, we have the following facts:
(1) If A is reqular over ¢(A); then (t,/n) € co.
(2) If t € co(A); then A is reqular over ¢(A).
Proof. (1) If A is regular over ¢(A); then A(t) € ¢y (by (2) of Corollary 3.3.4) which

implies that (t,,/n) € ¢o by (2) of Corollary 3.2.12 (see Example 3.2.14 to disprove the

converse implication).
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(2) If t € co(A); then A(t) € o and so A(t) € ¢y by using (3.3.5) of Corollary 3.3.3

(or (3) of Corollary 3.2.12). Thus A is regular over ¢(A) by (2) of Corollary 3.3.4. O

Corollary 3.3.6 Let t be either u or v. Then, we have the following facts:
(1) If (tp/n) € ly; then the equality c(A) N co(A*) = co(A) holds.
(2) If t € l; then Lo Nc(AY) C co(A) (in particular, if t € Lo N c(AY); then
t€cy(A)).
(3) If t € loo; then Lo Nc(AY) = Lo Ncp(AY) = Lo Nco(A) = Lo Ne(A).

(4) t €Ll Ne(AN) <=t el Ne(AN) <=t €l Ney(A) =t € Uy, Nc(A).

Proof. (1) The inclusion c¢y(A) C c¢(A) N co(A*) is always satisfied (without using
the assumption (¢,/n) € £, since co(A) C ¢(A) and ¢o(A) C co(A*)). To prove the
converse inclusion, let z € ¢(A) N cy(A*) be arbitrary. Then x € ¢(A) and z € c¢p(A?).
Thus, from z € ¢o(A*) we get (x,/(n +t,)) € co by (3) of Theorem 3.2.9. Besides,it
is obvious that 1/(1 + t,/n) > 0 for all n and since (t,/n) € l; we deduce that
(1/(1 +t,/n)) & co. Therefore, there exists a positive real number a > 0 such that

1/(1+4t,/n) > «a for all n. Hence, we obtain that

and since (x,/(n+t,)) € co; we get lim,,_,o0 /1 = lim,, o |2,/n| = 0. But x € ¢(A)
and so lim,, oo A(zy,) = lim, o0 x,/n = 0 (by (2) of Lemma 1.3.4). Thus z € ¢o(A)
which implies that c(A) N co(A*) C ¢o(A). Therefore, we deduce that the equality
c(A) N eg(AY) = cp(A) holds provided that (,/n) € lo.

(2) Suppose that t € f, which yields v € (, and take any z € (o N c(AM).

Then = € co(AY) (by (1) of Corollary 3.1.8) and so A(z) € ¢, which implies that
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vA(z) € ¢ C co(A) and hence A(vA(z)) € ¢p. Thus, it follows by (3.2.7) that
A(x) — A(z) € ¢o and so A(z) € ¢y (as A(z) € o) which means z € co(A).

(3) Assume that t € {,. Then, by using part (2), it follows that o, N c(A*) =
loo M co(A). Thus, by combining this equality with those equalities given in (2) of
Lemma 2.1.4 and (2) of Corollary 3.1.8 we get the required equalities.

Finally, part (4) follows immediately from (3) and this ends the proof. O

Corollary 3.3.7 Let t be standing for any of the sequences u or v. Then, for every
sequence x = (x,), we have the following facts:

(1) If limy, 500 Zn/t, = 0; then x € co(AY).

(2) If limy, 500 tn/n = 00; then: € co(AY) <= lim, o0 T/t = 0.

(3) If lim,, oo t,/n = 00; then: x € ¢(AY) <= lim,,_ o0 Tp/t, exists (in such case:

limy, o0 Ay () = limy, o0 2 /80 ).

Proof. (1) Assume that limg ,o xx/ty = 0. Then z/u € ¢y (as ¢, < ug and so
|2k | /ur, < |zy|/tr for all k> 2). Thus, we can define a sequence z € co(A?) by

n
i T
=== (>
U, k=1 Uk

To see that, we have ¢y C cp(A) C co(A*). Thus, from x/u € ¢y we get x/u €
co(AY) as well as (Y p_, z/ug) € co(A) and so (Y ;_, xx/uk) € co(A*). Thus z €
co(A*). On other side, since z/u € cp; we can use (2.2.9) and (2) of Remark 2.2.9 to

define a sequence y € co(A*) by

_ A(/\nzzzlxk/uk)

n= > 1
’ A0 =
which can be written as follows
“ T Tn
n — - n\ Z 1



But v, = u, — 1 (n > 1) and so we find that y,, = z,, — 2, for all n. That isy =z — z
which implies that x =y + 2 € ¢o(AY) (as y, 2 € co(AY)).

(2) Assume that lim, .. t,/n = oo and so lim, ,,,n/t, = 0. Then, for every
x € co(A*), we have lim, o z,/(n + t,) = 0 by (3) of Theorem 3.2.9 which implies
that lim,, o (z,/t,)/(1 + n/t,) = 0 and hence lim,,_,, x,/t, = 0. Also, the converse
implication is immediate by part (1).

(3) Assume that lim,, o t,/n = co. Then, for every x € ¢(A*), we can follow the
same technique used in the proof of part (2) to show that lim, ., x, /t, exists. For the
converse implication, suppose that lim,, ., x,/t, exists, say L = lim,,_,o ,/t,. Then,
we have limy, o (2, — Lt,)/t, = 0 which implies lim,, An(m — Lt) = 0 by part (1).
Thus, we get lim, o0 ( An(z) — LAL(t)) = 0. But lim,_. An(t) = 1 (as A(k) € ¢ by
(1) of Corollary 3.2.12) and we therefore deduce that lim,, (A, (z) — L) = 0 and so

lim,,_, o _/~\n(x) = L = lim,,_, x,/t, which completes the proof. O

Now, we are going to characterize the cases of identities between the new A-
difference spaces and the usual difference spaces. For this, we need the following:

For any sequence = = (x,,), it follows from (3.2.7) that

A(zy) = An(z) + A(vphn(2)) = upAp(z) — Vo1 Ay (2) (n>1)

which can be written as follows

~ A

A(xy) = upAy(z) — Vp_1Ap_1 ()

Il
Sy
AN
=
&
)
\Y
=

where B = [b,] is the triangle defined by

Uy 0 0 0
—U1 U9 0 0

B=| 0 —v wu 0 (3.3.7)
0 0 —v3 ug

That is A(z) = B(A(z)) for all z € w. Then, we prove the following lemma:
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Lemma 3.3.8 If B = [bu:] is the triangle given by (3.3.7) and t = (t,) is standing

for any of the sequences u = (u,) or v = (v,); then we have the following equivalences:

(1) B € (loo, b)) <= B e (co,c0) = tels.

A

(2) Be(c,c) <= teloNc(A).

Proof. Let B = [l;nk] be the triangle given by (3.3.7). Then, it is obvious that

lim b, = 0 for every k> 1,

n—oo

0o
Z |i)nk| = Uy, +Vp1 = 14+v, +v, (TL > 1)7
k=1

Zi)nk = Uy — Up1 = 1+ Avy) (n>1)
k=1

and since lim,, .o, b,z = 0 for every £ > 1; we can apply Lemma 3.3.1 to our triangle

B to obtain the following:

B€e (lo,ly) < Be (o) < vely,
Be(ee) <= velynNe(A) <= velyNe(D),
where o N c¢(A) = loo N co(A) by (2) of Lemma 2.1.4. Finally, by using (1) and (4) of

Lemma 3.2.6, we conclude the proof. O

Lemma 3.3.9 Let p be standing for any of the spaces ¢y, ¢ or L. Then, we have the

following equivalences:

(1) The equality n(A*) = u(A) holds <= the inclusion u(A*) C u(A) holds.

(2) The equality ju(A) = p(A) holds < B € (u, 1), where B is given by (3.3.7).
Proof. (1) It is clear that u(A*) = u(A) = u(A*) C u(A). Also, the converse
implication is obvious for p = g or p = o, since u(A) C u(A*) is always satisfied (by
(1) of Theorem 3.3.2). So, the implication ¢(A*) C ¢(A) = ¢(A*) = ¢(A) is left,

and to prove it, suppose that ¢(A*) C ¢(A) and let’s deduce the converse inclusion.
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For this, it follows by (2) of Lemma 3.2.5 that (k +v;) € ¢(A*) and so (k+v;) € ¢(A)
(as ¢(A*) C ¢(A) by assumption). But (k) € ¢(A) and since (k + vy,) € c(A); we
deduce that (vg) € ¢(A), that is v € ¢(A) which means that A(v) € ¢. Thus, by using
(2) of Corollary 3.3.3, we find that ¢(A) C ¢(A*). Subsequently, we get ¢(A*) = ¢(A).

(2) Let B = [byy, ] be the triangle given by (3.3.7). Then, we have A(z) = B(A(z))
for all z € w. Also, from Theorem 2.2.7 and (2) of Remark 2.2.9, we have pu(A*) =
such that = € u(AY) <= y € pu, where y = A(x). Therefore, by using part (1) with
(1) of Lemma 1.3.7, we deduce the following:

p(AY) = p(AY) = p(AY) C u(A)

z € p(A) for all z € pu(A?)

!

A(x) € p for all A(z) € p
B(A(z)) € p for all A(z) € p

B(y) € p forall yep (y=A))

111

B € (1, p)

which completes the proof. O

Theorem 3.3.10 Let t = (t,) be standing for any of the sequences u = (u,) or

v = (v,) given by (3.2.1). Then, we have the following facts:
(1) The equalities co(AN) = co(A) and loo(A*) = Lo (A) hold if and only if t € { .
(2) The equality c(A*) = c(A) holds if and only if t € lo Nco(A).

Proof. (1) By using (2) of Lemma 3.3.9, we have

co(AY) = co(A) <= B e (co,c0) and  Loo(AY) = lo(A) <= B € (oo, lso) s
where B is the triangle defined by (3.3.7). Thus, from (1) of Lemma 3.3.8, we deduce

that cg(AY) = cp(A) = lo(A*) = (o (A) < t € ly. In fact, if t € £, and so
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v € lo; then © € co(A) <= 7 € cx(AY) as well as 7 € (o(A) < x € ((A*). To

see that, we can use the equalities in (3.2.7) which can be written as follows:

A(z) — A(z) = A(vA(z)) = A(vA(x)) (x € w). (3.3.8)
Then, for every x € ¢o(A) and by using (3.3.8) we find that
A(z) € cg = vA(z) € cg = AvA(z)) € co = A(z) — A(z) € ¢

and so A(z) € ¢y which means that = € co(A*). Similarly, for any z € co(A*) we have

A(z) € cg = vA(2) € co = A(vA(2)) € co = A(z) — A(z) € ¢

and so A(z) € ¢y which means that z € ¢o(A). That is 2 € ¢o(A) <= x € ¢o(AY)
and by using the same technique we can show that x € (o (A) <= x € ((AM).

(2) Similarly, by combining (2) of Lemma 3.3.8 with (2) of Lemma 3.3.9, we get

A

c(AN) = ¢(A) <= B € (c,c) < t € lxNcp(A).
In fact, if ¢t € lo Nco(A) and so v € lo N co(A) which implies that v € o
and A(v) € co; then it follows by (3.3.8) that z € ¢(AY) <= z € ¢(A), where
limy, o0 Ap(2) = lim, o0 A(x,) for every z € ¢(A) and for every = € ¢(AY). To see

that, we can use (1.1.2) to deduce that

A(vpA (zr) ) = v A(A(zg)) + Alzp—1) A(vg) — 0 as k=00 (z € ¢(A)),

A(v, Ap(z)) = vnA(]\n(x)) + A 1(@)A(v,) — 0 as n— o0 (z€c(AY))
and we respectively obtain that A(vA(z)) € ¢ (as co(A) C co(A*)) and A(v A(z)) € .
Thus, in both cases we get A(z) — A(z) € ¢ by using (3.3.8) which implies that
x € c (AA) <= = € ¢(A) such that lim,,_, ]\n(x) = lim, o A(z,) for every x in

c(A) or in ¢(A*). Hence, we get the required equality which ends the proof. O
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Now, by using (3.2.1), it can easily be shown that

1
Upty] = ——————
LR O W) W)

A
and  A(Uni1) = Uy unHA( 3 - ) (n>1)
n+1

and so u € ly <= sup,(An/Ay1) < 1. Also, if u € ly, then: A(u) € ¢y <

limy, 00 A(An/Ans1) = 0. This, with (2) of Theorem 3.3.10, leads us to the following:

The equality ¢(A*) = ¢(A) holds <= sup,, (

)\/\n ) < 1 and limnﬁooA< An ) =0.

n+1 n+1
Remark 3.3.11 From Theorem 3.3.10, we may note the following:
(1) If t € ¢; then ¢(A*) = ¢(A) (since ¢ C log Nco(A) by (3) of Lemma 2.1.4).
(2) By using (2) of above theorem with (4) of Corollary 3.3.6, we deduce that
c(AY) = ¢(A) <= t €l Ne(AY) <= t €l Np(AY) <= t € s Nc(A).
(3) For the equalities j(A*) = u(A) to be held, the necessary condition ¢ € /4,
must be satisfied, which is not sufficient for the equality c(A*) = ¢(A) (but,
if t € £o; then co(A) C c(AY) C loo(A)).
(4) The equality ¢(A*) = ¢(A) implies the regularity of A over ¢(A), but the

converse is not true (see Example 3.3.17 for such case when ¢ € co(A*) \ £o).

Corollary 3.3.12 Let t be any of the sequences u or v. Then, we have the following:
(1) The inclusions co(A) C co(A*) and loo(A) C oo (AY) are strict <= t ¢ lo,.

(2) The inclusion c(A) C c(A*) strictly holds <= t € ¢(A*) \ l.

Proof. This result is an immediate consequence of Theorems 3.3.2 and 3.3.10. O

In addition, it is well-known that the usual difference spaces co(A), ¢(A) and
U (A) are so "large” such that the "most” other sequence spaces are included in these
difference spaces. For example, all other sequence spaces defined in Chapter 1 (see

Section 1.1.2.4, p.8) are strictly included in ¢o(A) which is the smallest space among
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the usual difference spaces, but the same is not true for the new A-difference spaces.
To see that, part (1) of Theorem 3.3.2, with help of Lemmas 1.3.1 and 3.1.1, leads us

to deduce that the following inclusions are always satisfied:
co(A) C pu(AY) and (A) C loo(AM), (3.3.9)

where p stands for any of the spaces ¢y, ¢ or {y. That is ¢o(A) is included in
all \-difference spaces and all usual difference spaces are included in o (A*). Fur-
ther, although /o, ¢ co(A), but we have already shown that (o, C ¢o(A*) whenever
lim,, o0 t, = 00 (see Theorem 3.1.6), where ¢ is either v or v which are given by (3.2.1).
In fact, if lim, .o t, = o0o; then co(A*) is never included in the largest space of the
usual difference spaces, that is cg(A*) ¢ (o (A). To see that, let z = ((=1)"v/%,).
Then z ¢ (oo (A), but lim,, o 2,,/t, = 0 which implies that 2 € ¢;(A*) by (1) of Corol-
lary 3.3.7. Moreover, in the following last result, we show that if lim, . t,/n = oo;
then all usual difference spaces are strictly included in the smallest A\-difference spaces,

that is u(A) C co(A*) (the strong case of strict inclusions).

Corollary 3.3.13 The difference spaces co(A), c(A) and lo(A) are strictly included
in co(AN) if and only if A(k) € ¢y (or equivalently: limy, o t,/n = 00, where t is any

of the sequences u or v).

Proof. Let u be any of the spaces ¢, ¢ or .. Then, we have to prove that
1(A) S co(AY) = Ak) € ¢y <= lim,_o0t,/n = 0.

For this, we have A(k) € ¢y <= lim,_,o0 t,/n = 00 by (1) of Corollary 3.2.12. So,
it is enough to show that 1(A) G ¢o(AY) <= A(k) € c. For, if u(A) C ¢o(A*) and
s0 ¢(A) C co(AM); then (k) € co(AY) (as (k) € ¢(A)) and hence A(k) € c.

Conversely, suppose that A(k) € ¢ and let & € pu(A) be arbitrary. Then z € £oo(A)

and there must exist a positive real number M > 0 such that |A (x})| < M for all k.
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Thus, for every n > 2, it follows, by using (3.2.2) and (3.2.3), that

1
|An(2)] < < o Zxklm(ka

ZA“—MA (k).

'I’L'I’L

Thus, we get 0 < |A, (z)| < M A, (k) for all n, and by passing to the limits when
n — oo with using the assumption A(k) € ¢y, we get A(z) € ¢y and so z € ¢o(A)
which shows that u(A) C ¢o(A?). Finally, this inclusion must be strict. To see that,
let x = ((=1)"n). Then z ¢ (,(A) and so = ¢ u(A), but z € co(A*) by Corollary

3.3.7 (as lim,, oo n/t, = 0 from the hypothesis and so lim,_, ,/t, = 0). O

At the end of this chapter, previous results will be illustrated by various examples

concerning with the distinct cases of relation between the spaces c(A) and c¢(A%).

Example 3.3.14 The case of strict inclusion ¢(A) S ¢(A*Y) (and so p(A) S u(AY)):
In this case, we must have ¢ ¢ (., and A(t) € ¢ by (2) of Corollary 3.3.12. Thus (,/n)
cannot be oscillated while A(t) maybe oscillated. So, we have the following two cases:

I - When (t,/n) € cand t & l: e.g., see Example 3.2.15 for such case, where
U ¢ loo, (un/n) € ¢ and Alu) € ¢ (but A(u) is oscillated). In particular, if A(t) € ¢
and t & (oo; then ¢(A) & ¢(A*). For example, consider the sequence A = (A,,) defined
by A\, = (n+ 1)" for n > 1, where » > 0. Then, we have t, — oo, A(t,) — 1/r,
An(t) = 1/(1+7) and A, (k) — /(1 +7) as n — oo (also, see Example 3.3.17).

IT - When t,/n — oo (and so t,, — o0) as n — oo: This is the strong case
of strict inclusions in which A(k) € ¢ (see Corollary 3.3.13). In this case, we have
1(A) S co(AY) S ¢(AY) and so ¢(A) S ¢(AY). e.g., see Example 3.2.16 for such case,
where v, = 00, v,/n — 00 and A,(v) = 1 as n — oco. In particular, if A(t) — oo;
then ¢(A) G ¢(A*). For example, let A = (),) be given by A, = (2*" —1)/2>""! and

50 u, = (22" —1)/3 for all n. Then u,, — 00, A(u,) — 00, A, (u) — 1 and A, (k) — 0.
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Example 3.3.15 The case of identity c(A*) = ¢(A) (and so u(A*) = u(A)): In this
case, we must have t € o, N co(A) by (2) of Theorem 3.3.10. In particular, if ¢ € c¢;
then c¢(A*) = ¢(A). For example, let A = (\,) be defined by A\, = (n+1)! (or A\, = a",

a > 1) for n > 1. Then, we can show that t € lo, A(t,) — 0, A, (t) = 0, A, (k) — 1.

Example 3.3.16 The case of non-inclusion ¢(A) ¢ ¢(A*) (and so ¢(A*) ¢ ¢(A)): In
this case, we must have A(t) & ¢ (by (2) of Theorem 3.3.2), i.e. the sequence A(t) is
oscillated and so A(t) must be oscillated while (¢,/n) may not be oscillated (but if
(tn/n) is oscillated; then ¢(A) ¢ ¢(A*)). Thus, with A(t) & ¢, we have two cases:

I - When t € / and so both of t and A(#) must be oscillated (in this case,
we have cyp(A?) = co(A) and o (AY) = £5(A)). For example, consider the sequence
A = (a,ab,a?b,a®b?, - --), where b > a > 1. That is, for k > 1 we have

U+ D/2 pk=1)/2. (k is odd),

A =
ak/? ph/2 (k is even).

Then, for evey n > 1, it can easily be shown that

a/(a—1); (nisodd), b—a)/l(a—1)b—-1)]; n is odd),
. [la=1); ( ) Alu,) = (b—a)/l(a—1)(b—1)] ( )

b/(b—1); (nis even). —(b—a)/[(a—1)(b—1)]; (nis even).
b—a (a—1)(b+1)
=1 ab—1

_b—a +a(b2—1)
ab—1 ab—1

(ab)~=D/2. (n is odd),

(ab)~"/?; (n is even).

Thus u, A(u), A(u) and A(k) are oscillated while (u,/n) € ¢y (see Example 3.2.16).
IT - When t ¢ (., and (t,/n) is oscillated. Then, both of A(t) and A(t) must be
oscillated (in this case, the inclusions co(A) C co(AY) and £y (A) C loo(A?) are strict).

For example, let A = (1,3,4,8,9,---). That is, for £ > 1, we have

- {(k;+1)2/4; (k is odd),
B (K* + 4k) /4 ; (k is even).
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Then, for every n > 1, it can easily be seen that

Auy,) =
n+4)/4;  (nis even). (tn)

Y {(n+1)2/4; (n is odd), {(n2+n—2)/4; (n is odd),
! ( (—n?+n+4)/4; (nis even).

Ay (u) = {(Bn -1)/3Bn+3); (n i.s odd),
(—m +4)/(3n); (n is even).

Hence u,, — 00, (u,/n) is oscillated between 1/4 and co, A(u) is oscillated between

400, A(u) is oscillated between 1 and —1/3, and so is A(k) (between 0 and 4/3).

e In Example 3.3.16, where A(t) ¢ ¢ and so ¢(A) ¢ ¢(A*) as well as ¢(A*) ¢ ¢(A).
We may ask about the intersection ¢(A) N ¢(A*), what shall be equal ? This question

is left as an open problem with noting that cy(A) C ¢(A) Nc(A*) C e(A).

Example 3.3.17 Here, we consider the case t € co(A*) \ o which shows that the
regularity of A over ¢(A) does not imply the equality ¢(A*) = ¢(A) (see (4) of Remark
3.3.11). This example is also a particular case of that given in (I) of Example 3.3.14.
In this particular case, we get the same properties of the case ¢c(A*) = ¢(A) given in
Example 3.3.15 with only one difference, namely t ¢ /... Thus, we just have the strict

inclusion ¢(A) C ¢(A*) with A-regularity over ¢(A). For, let A = (\;) be defined by

Ak:f[(lJr\/_'—\/j——l) (k>1).

Then, it can easily be shown that
AM)=2 and AN)=WVEk-VE-1)No (k> 1),
vy=0 and v=vVk+Vk—1 (k>1).
Thus, we find that v ¢ £, which implies that c(A*) # ¢(A). But, it is clear that
A(v) € ¢y which implies that A(v) € ¢y (as co(A) C ¢o(A*)). Therefore, we have the

strict inclusion ¢(A) C ¢(A*) with A-regularity over ¢(A).
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Chapter 4
KOTHE-TOEPLITZ DUALITY




4 KOTHE-TOEPLITZ DUALITY

In the present chapter, we shall conclude the a-, 5- and y-duals for the A-difference
spaces of bounded, convergence and null A-difference sequences. Also, we study some
properties of their duals. This chapter is divided into three sections, the first is devoted
to present our used notations and prove some lemmas, the second is to obtain the dual
spaces for the usual difference spaces and the last is to deduce the dual spaces for the
new \-difference spaces. The materials of this chapter are part of our research paper*

which has been published in the Ijrdo J. Math., on 2022.

4.1 Terminologies

In this first section, we shall display some needed notations and terminologies,
and prove some important results about series (bounded, convergent and absolutely
convergent series) which will be used in proving the main results in next sections.

For simplicity in notations, here and in the sequel, we assume that a € cs. Then,
the series > a; converges and we denote its k-th remainder > 72, a; by Ry(a) or
simply Ry for all & > 1, and so R = (Ry) is the sequence of all those remainders.
Besides, the finite sum 7, a; will be denoted by Rj(a) or simply R} for all n > 1

and every k < n. That is, we have

Ry := Ry(a) = Zaj and v =R (a) = Zaj (k>1,n>k). (4.1.1)
j=k j=k

*A.K. Noman and O.H. Al-Sabri, Matriz operators on the new spaces of \-difference sequences,
Tjrdo J. Math., 8(1) (2022), 1-22.
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Thus Ry = lim,, o Ry and Ry = Ry + R,;1 which implies that
|[Rp| = |Ril| < |Rp— Ril = |Rosa] (1< k<n)

and by applying the triangle inequality, we obtain that

n n

D IR =) IR

k=1 k=1

< n|Rusi] (n>1). (4.1.2)

Also, for every n > 2, we have

n n—1 n n
D lakl = lanl + Y IRy = Rl < Y IRE+ Y IR,
k=1 k=1 k=1 k=2
n

that is olal < Y IR+ D IR (n>2)
k=1 k=2

k=1

and by adding |R}| to both sides, we deduce the following inequality:

n
D
k=1

Further, we will frequently use the following familiar sum-formula:

Zsk Zt = Ztk Zsj (1<r<n)

which still valid if n is replaced by oo provided that series are convergent. Thus, with

n

Zlak‘ < Z|ak’ +
k=1

k=1

< zzn:mg\ (n>1). (4.1.3)

our assumption a € cs, we obtain that

o0

Ruvi = Y (% - m—+1> Z ja; (n>1). (4.1.4)

m=n+1 j=n+1

Moreover, for every x € w, we have z), = Z§=1 A(z;) for k > 1 and it follows that

Zakmk = ZRQ Azg) = ZRk A(zg) — zp R (n>1), (4.1.5)
k=1 k=1 k=1
> kay = ZRk ZRk nRyi1 (n>1), (4.1.6)
k=1

where (4.1.6) can also be obtained from (4.1.5) by taking z; = k for all k > 1.
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In addition, let us consider the particular case a € ¢; in which |a| = (|ag|) € ¢s
and so a € cs. Then, all above relations are valid and we also use (4.1.1) to define
R = RY(|a]) for 1 <k <n, and R = (Ry) is the sequence defined by Ry, = Ry(|a|) for

every k > 1. That is, we have the following additional conventions:
Ry := Ri(|a)) Z|a]| and  R? := R(|a|) Z|aj| (k>1,n>k). (41.7)
i=k

Thus, from (4.1.6) with |a| instead of a, we find that

D lkar] = R =) Rp—nRy (n>1). (4.1.8)
k=1 k=1 k=1
Now, we may begin with the following basic lemma:

Lemma 4.1.1 For every a € {1, we have the following facts:
(1) >opoy|Bil =225 Ry and 350 |Ry| = 20 Ry for alln.
(2) Recs<= Rely <Y 2> = la;| < oo.
(3) The sequence (Y p_ Ry), is increasing of non-negative real numbers.
(4) If R € ly; then (>, Rp)2, € U

Proof. (1) It is obvious by (4.1.7) that Z_%Z > 0 as well as Ry, > 0 for every k > 1 and
all n > k. Thus |R}| = R? as well as |Ry| = Ry, for every k > 1 and all n > k which
proves (1). Also, part (2) is immediate by (1) with help of (4.1.7).

For (3), it can easily be seen that A(Y .} RY) = nla,| > 0 for all n and so
(> Ry, is increasing of non-negative real numbers, where R > 0 for all n.

To prove (4), it is clear by (4.1.7) that R? < Ry for every k > 1 and all n > k.
Also, if R € ¢y; then we deduce that > R < >0 Ry < > .2 Ry for all n (since
Ry, > 0 for all k). Hence, it follows that (>} R? )%, € lu. O
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Lemma 4.1.2 We have the following true implications:

(1) (na,) € bs = accs. Also (Y ,_R}) € loo = a € cs.

(2) (na,) €cs = accs. Also (Y ,_R}) €c = a€ cs.

(3) (Do i|RE) €l = a€ty. Also (Y }_|R}|) €c = a€ly.
(4) (nay,) €l = a€ly. Also (Yo |R}) € loy = a € (4.

Proof. For (1), assume (na,) € bs, and since (1/n) € bug; we deduce that a = (a,) =
(1/n)(na,) € cs (as bs? = buvy). The second implication is obtained from the first one
which help of (4.1.6), where (Y ,_ R}) € log = (> p_ kay) € los = (na,) € bs
(in other words: (D>_;_R}) € loo = (A(D_,_,R})) € bs = (na,) € bs, since
A(> 7 RY) = na, for all n). Also, the implications in part (2) are immediate by
those given in part (1), as ¢s C bs and ¢ C {.

For (3), it is obvious by (4.1.3) that

S larl <23 IR < 2sup Y IR (n>1).
k=1 k=1 "ok=1

Thus, if (Y ;_,|R}|) € ls; then a € ¢; which proves the first implication and the
second one is immediate by the first.

Finally, the implications in part (4) are immediate by those given in part (1) with
la| instead of a. In other words, we have |ay| < |kag| for all k£ and hence > ;7 |ax| <
> rei|kag| which yields the first implication, i.e. (na,) € ¢, = a € {;. The last
implication can be obtained from (3), where |Ry| < R} (k < n) and so Y ,_,|R}| <
> r_ R which can also be obtained from the first implication by using (4.1.8), where

(ki BR) € b = (Xjilbar] ) € boo = (X4 lkar]) € c = (nay) € &4
(note also that: A(Y ;| RY) = |na,| for all n. Thus, we deduce that

(ST R €l = (A(D_ RY)) € bs => (|na,|) € bs = (na,) € ¢;). O
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Lemma 4.1.3 We have the following true implications:
(1) (na,) € bs = (nRp41) € loo. Also (D p_RY) € boo = (nRyy1) € loo.
(2) (na,) € cs = (nRy41) € ¢p. Also (Y ,_R}) € c = (nRy41) € co.
(3) (na,) € &y = (nRy11) € cp. Also (>;_ RI) € c => (nRy41) € co.

Proof. (1) Suppose that (na,) € bs. Then a € ¢s (Lemma 4.1.2) and so the sequence
R = (Ry) is well-defined. Also, since (}_7", ja;) € (o (by assumption); there is a
real number M > 0 such that [> 7", ja;[ < M for every m > 1. Thus, for all integers

m,n > 1 such that m > n, we find that

Z Jja; Zjaj - Zjaj
j=1 j=1

j=n+1
and by using (4.1.4) it follows that (n > 1)

=1 1
| Bnia] < Z (E_erl)

m=n+1

= < + < 2M

> ja;
j=1

> ja;
j=1

, = /1 1
| < 2M ZH(E_mH)

Thus |R,+1| < 2M/(n+ 1) < 2M/n and hence n|R, ;1| < 2M for all n > 1 which

means that (nR,41) € . Also, if (> ) _|R}) € l«, then it follows by (4.1.6) that
(> op_, kag) € lo which means that (na,) € bs and so (nR,11) € (s (as we have
already shown).

For (2), assume that (na,) € c¢s. Then a € ¢s and so R exists. Also, since
(>_7=1 ja;) € c (by hypothesis); for every positive real number € > 0 there is an integer
ko > 0 such that [>°7 | ja;| < e for all integers m and n satisfying m > n > k.
This, together with (4.1.4) and the same technique used above, leads us to deduce the

following for every integer n > kq

[ee]

1 1
Roal< 3 (= 751)

m=n+1

o0

<Y (m-7):

m=n+1

> da

j=n+1
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Thus |R,+1| < €/(n+ 1) < ¢/n and hence n|R,, 1| < € for all n > kg which means
that (nR,+1) € ¢o. Also, the other implication is obvious by (4.1.6).

Finally, to prove (3), let (na,) € ¢;. Then a € ¢, (Lemma 4.1.2) and so R = (Ry)
is well-defined. Therefore, the implications in part (3) are immediate by those of part
(2) with |a| instead of a, where R? = R?(|a|) for n > k > 1. This ends the proof (note

that (na,) € {1 <= (|na,|) € cs, and we have |na,| = nla,| for all n). O

Remark 4.1.4 It must be noted that R € ¢; implies that (nR,,;) € ¢y for every
a € ¢;. To see that, we may note that R € {; = (>_,_,RI) € ls (by (4) of Lemma
4.1.1) = (Y1_ R?) € ¢ (by (3) of Lemma 4.1.1) = (nR,11) € ¢ (by (3) of Lemma
4.1.3). In other words, it is clear that if R € /;, then R is a decreasing sequence of

non-negative real numbers such that R € £, and so (nR,,1) € ¢ [56].

Lemma 4.1.5 The following conditions are equivalent to each others:
(1) (nay) € bs.
(2) a€cs, Rebs and (nRyi1) € loo.
(3) (ko BtR) € loo.

Proof. We will prove that (1) = (2) = (3) = (1) as follows:

Suppose that (1) is satisfied, that is (Y ;_ kaxr) € loo. Then a € ¢s (by (1) of
Lemma 4.1.2) and (nR,41) € s (by (1) of Lemma 4.1.3). Thus, it follows by (4.1.6)
that () °,_, Ry ) € ls which means that R € bs and this shows that (1) = (2).

Also, assume that (2) is satisfied, that is (nR,11) € ls and R € bs, where a € cs
and so R = (Ry,) is well-defined. Then, it follows by (4.1.6) that (> ;_R}) € lx

which is (3).
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Lastly, it is clear by (4.1.6) that (3) = (1), where (3) implies that (A} ,_,R})) €
bs, but A(>,_, R} ) = na, for all n which implies (1). This ends the proof (note that:

each one of given conditions implies that a € cs). O

Theorem 4.1.6 The following conditions are equivalent to each others:
(1) (=l BED) € Ll
(2) a€ly, Rely and (> ;_R}) € lx.
(3) a€ly, Rely and (nRyy1) € loo.
(4) a€ty, Rely and (nay,) € bs.

Proof. It obvious by Lemma 4.1.5 that (2) <= (3) <= (4) (since ¢; C ¢s C bs). To
see that, it is clear that if a € ¢; and R € ¢; (and so a € ¢s and R € bs); then we find,
by Lemma 4.1.5, that

(Sor_ R} € loo <= (nRy11) € oy < (na,) € bs
which means that (2) <= (3) <= (4). Thus, to prove that given conditions are
equivalent, it is remaining to prove that (1) <= (2). For this, suppose that (1) is

satisfied, that is (D", _,|R}|) € le. Then a € ¢, (by (3) of Lemma 4.1.2) and since

D R
k=1

we get (D0 RY) € s and so (nRy4+1) € ls by Lemma 4.1.5. Therefore, we have

< > IRy < sup Y |RE| (n>1);
k=1 k=1

(Y p_1IRY|) € Lo as well as (nRy41) € loo. Also, by using (4.1.2), we deduce that
(> r_1|Rk]) € Lo and so (>_;_;|Rx|) € ¢ which means that R € ¢;. Hence, we
conclude that (1) = (2).

Conversely, assume that (2) is satisfied, that is (> ;_, R} ) € {s and R € {;, where

a € {1 and so a € cs which means that all terms of R exist. Then, we have (nR, 1) € {
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(by Lemma 4.1.5) and (> ;_,|Rk|) € s (as R € £1). This together with (4.1.2) lead
us to conclude that (> 7 _|R}|) € s which is (1), that is (2) = (1). Therefore, we

deduce that (1) <= (2) and this completes the proof, since (2) <= (3) < (4). O
Lemma 4.1.7 The following conditions are equivalent to each others:
(1) (na,) € cs.

(2) a€cs, Recs and (nR,11) € co.

(3) (k= Bi) €c

Furthermore, if any one of above conditions is satisfied, then we have

;kak = lim ;R = lim ;Rk = ;Rk. (4.1.9)
Proof. First, it is obvious, by (2) of Lemma 4.1.2, that each one of given conditions
implies that a € cs and so the sequence R is well-defined. Next, to show that these
conditions are equivalent, it can easily be proved that (1) = (2) = (3) = (1), but

the proof is exactly same as that proof of Lemma 4.1.5 (by using (4.1.6) and (2) of
Lemma 4.1.3).

Further, suppose that condition (1), (2) or (3) is satisfied. Then, since these
conditions are equivalent; all are satisfied and by going to the limits in all sides of

(4.1.6) as n — oo, we get (4.1.9). This ends the proof. O
Theorem 4.1.8 The following conditions are equivalent to each others:

(1) (k| BRI € los and (nRnsa) € co.

(2) (il BRI € ¢ and (nRnpa) € co.

(3) a€ly, Rety and (nRyy1) € co.
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(4) a€ty, Rely and (nay,) € cs.
(5) a€ly, Relyand (> ;_R}) € c.

Furthermore, if any one of above conditions is satisfied, then we have

lim Y[R = lim » |Re| =) |Rul- (4.1.10)
k=1 k=1 k=1

Proof. It obvious by Lemma 4.1.7 that (3) <= (4) <= (5) (as {; C c¢s). Thus,
to prove that given conditions are equivalent, it is remaining to prove that (1) <=
(2) <= (3). For this, suppose that (1) is satisfied, that is (> ;_,|R}|) € l and
(nRy41) € co, where a € ¢ (by (3) of Lemma 4.1.2) and so R is well-defined. Also, since
(> o_1|R}|) € loo; we get R € £y (by Theorem 4.1.6) which means that (Y _,_,|Rx|) €
c. Therefore, we have (nR,41) € ¢o as well as (D> ;_,|Ri|) € c. This leads us with help
of (4.1.2) to deduce that (>_;_,|R}|) € ¢ which means that (2) is satisfied and hence
(1) = (2). Also, it is trivial that (2) = (1) and so (1) <= (2).

Next, assume that (2) is satisfied, that is (>_,_,|R}|) € cand (nR,41) € ¢, where
a € ly (by (3) of Lemma 4.1.2) and so R is well-defined. Then, by using (4.1.2), it can
easily be seen that (Y ;_,|Rk|) € ¢ and so R € {;, that is (2) = (3). Conversely,
suppose that (3) holds, that is a € {1, R € ¢, and (nR,+1) € co. Then, it follows by
(4.1.2) that (> 7_,|R}|) € ¢ which means that (2) holds, that is (3) = (2) and hence
(2) <= (3). Consequently, the given conditions are equivalent to each others.

Finally, if any one of these equivalent conditions is satisfied; we have (nR,,11) € co,
(> p_1IRY|) € cand (D> ;_,|Rk|) € c. Therefore, from (4.1.2) we get (4.1.10) and this

ends the proof. O

Finally, we end this section with the following theorem for which we need to keep

in mind those facts mentioned in Lemma 4.1.1 with our notations given by (4.1.7).
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Theorem 4.1.9 The following conditions are equivalent to each others:
(1) (ko BR) € loo.
(2) (Ciali) ec
(3) (na,) € 4.
(4) a€ly and R € (5.

Furthermore, if any one of above conditions is satisfied, then (nR,41) € co and we have

i|kak| = lim Xn:}?;; = lim zn:Rk = iRk. (4.1.11)
k=1 k=1 k=1 k=1
Proof. First, it is obvious that each of given conditions implies that a € ¢, (by (4) of
Lemma 4.1.2). Next, to show that these conditions are equivalent, we will prove that
(1) = (2) = 3) = (4) = (1)

For this, suppose that (1) is satisfied, that is (> ,_, RY) € fs. Then, it follows
by (3) of Lemma 4.1.1 that the sequence (Y_,_, R} ) is increasing as well as bounded.
This implies that (Y.,_,R}Y) € ¢ which is (2). Hence (1) = (2).

Also, let (2) be satisfied, that is (>_,_,R) € c. Then, it follows by (4.1.8) that
(> p_i|kag|) € c and so (na,) € ¢; which is (3), that is (2) = (3).

Further, assume that (3) is satisfied, that is (na,) € ¢;. Then a € ¢; (by (4)
of Lemma 4.1.2) and so R is well-defined. Further, we have, by assumption, that
(Ina,|) € cs or (nla,|) € es. Thus, it follows, by Lemma 4.1.7 with |a| instead of a,
that R(|a|) € ¢s and so R € cs, where R = R(|a|) by (4.1.7). This together with (2) of
Lemma 4.1.1 implies that R € ¢; which means that (4) is satisfied, that is (3) = (4).

Moreover, it is obvious, by (4) of Lemma 4.1.1, that (4) = (1). Therefore, all

given conditions are equivalent to each others.
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Finally, if any of these equivalent conditions is satisfied; then (Y.7_ R}) € ¢,
(>h_ Ri) € cand (nR,41) € ¢ (see (3) of Lemma 4.1.3 and Remark 4.1.4). Hence,

by passing to the limits in all sides of (4.1.8) as n — oo, we get (4.1.11). O

Remark 4.1.10 It must be noted that every condition in Theorems 4.1.6, 4.1.8 and
4.1.9 implies that a € ¢;. To see that, we have R € {; = R € bvy (as {; C bv;) =
A(R) € {4 = a € {y, where |A(Ry41)| = |ag| for all k. i.e. R € 4 = a € ¢, and
similarly R € ; = a € {; (see also (3) and (4) of Lemma 4.1.2). Thus, the condition
"a € {17 is necessary in Theorem 4.1.9 and must be mentioned. But, in Theorems 4.1.6
and 4.1.8, the condition "a € ¢;” can be replaced by the weaker condition "a € cs”
which is enough to define R by (4.1.1) (and from R € ¢; we get a € £;). Similarly, we

may note that "a € ¢s” is a necessary condition in Lemmas 4.1.5 and 4.1.7.

4.2 Duality For pu(A)

In the present section, we apply the results of previous section to obtain some new
and known results for the a-, 5- and vy-duals of the usual difference spaces.

For simplicity in notations, the usual terminologies of previous chapters will be
used throughout. That is, we will use the symbol u to stand for any one of the spaces
o, ¢ or Uo. Thus, by u(A) we mean the respective one of the spaces ¢o(A), ¢(A) or
{s(A), and so the corresponding space of co(A%), ¢(A*) or £ (A*) will be denoted by
p(AN). Also, by 6, we mean any one of the duality symbols «, 8 or v, that is 0 := a,
[ or . Thus, the 6-dual of a sequence space X is the a-, 8- or y-dual of X which was
defined by (1.1.3) as X = {a € w: ax € (f) for all z € X}, where (o) = ¢y, (B) = cs
and () = bs. For example, it is known by (3) of Lemma 1.3.5 that u’ = £;, and we

are going to find out the #-duals of the spaces p(A) (in this section) and the #-duals of
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the spaces p(A?) (in next section). For this, we have u C u(A) and p C u(A*). Thus,

it follows by (2) of Lemma 1.3.5 that {u(A)}Y C u? and {u(AY)}° C pf. That is
{w(A)}YY cey and  {u(AMY C 4.

Thus, we assume that a € ¢; and we may begin with obtaining 6-duals of the
difference spaces p(A). So, the notations in (4.1.1) and (4.1.7) will be used. Also, for

every = € w, it is known that = € u(A) <= A(x) € p, and by using (4.1.5) we have

> apry =) RpAz) = To(A(z))  (n>1),
k=1 k=1
where T = [t,x] is a triangle defined for all n, k& > 1 by

. Ry, (1<k<n),
" 0; (k>n>1).

Thus, by using above relation with (1) and (2) of Lemma 1.3.7, we deduce the following:

a € {(A)} <= ax € bs for all x € u(A)
— <Z::1le’k> € Uy for all z € u(A)
< T(A(z)) € U for all A(z) € u
< T(y) €l forallyep (y=A(x))

< T € (u,ls) (asT is a triangle).
On other side, Lemma 1.3.9 tells us that sup,, Y, |tak| < 0o is the necessary and

sufficient condition for T € (u, ). Thus, by above definition of T, it follows that

T € (p,le) < sup » |tux] < 00 <= sup » |R}| < 0.
k=1 k=1
Therefore, we deduce that
a € (A — (Zk:1|RZ|> €l (4.2.1)
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Similarly, we show that a € {u(A)} <= T € (u,c), and by Lemma 1.3.10 we get
a € {co(A)} = <Zk:1|RZ|> €l (4.2.2)

ae (nA)) = (3 IRl]) € lu and (nRup) € o (4.2.3)

where 7 stands for any one of the spaces ¢ or {4, and so n(A) is the respective one of

the spaces ¢(A) or lo(A). Similarly, by using Lemma 1.3.8, it can be shown that

a € {u(A)} = (Zklek) € ls (4.2.4)
So, with help of Theorems 4.1.6, 4.1.8 and 4.1.9, we conclude the following result
in which we give an equivalent formula for each type of dual spaces of p(A).

Theorem 4.2.1 Let p be any of the spaces ¢y, ¢ or L. Then, we have the following:

(1) The a-duals of n(A) are given by
{u(A)}={aect,: Retli}={act : (na,) €}

(2) The B-duals of u(A) are given by
{CO(A)}ﬁ ={a€ly: (nR,11) € by and R € (1}

={a €l : (na,) € bs and R € {1}.

{(n(A)Y ={act: (nRny1) €coand R € {1}
={a €t : (na,) € cs and R € {1},

where n(A) stands for any of the spaces c(A) or £ (A).

(3) The y-duals of u(A) are given by
{u(A)} " ={a€ly: (nRyy1) € loo and R € (1}
={a €t : (na,) € bs and R € (1},
where R = (R,) and R = (Ry) such that R, = Y2 |a;| and R, = 3772 a; for alln.
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Proof. Part (1) is immediate by combining (4.2.4) with Theorem 4.1.9 (see [32, The-
orem 2.1] for the 2" formula of {u(A)}®).

For part (2), the first two formulae of {cy(A)}’ are obtained from (4.2.2) with
help of Theorem 4.1.6 (see [33, Lemma 3] for the 1% formula of {co(A)}?). Also, the
second two formulae of {n(A)}? are obtained from (4.2.3) and Theorem 4.1.8 (see [32,
Theorem 2.1] for the 2" formula of {n(A)}?).

Lastly, part (3) is immediate by (4.2.1) with Theorem 4.1.6 (see [32, Theorem 2.1]

for the 2°¢ formula). 0

Remark 4.2.2 Frrom Theorem 4.2.1, we note that:

(1) {co(A)} = {co(A)}7, {c(A)} = {lo(A)} for & = a, § and ~, while
{co(A)}? = {n(A)}? for only § = « and ~ (not 3), where 7 = c or /.

(2) The term "a € ¢;” can equivalently be replaced by "a € ¢s” in the formulae of
p- and y-duals given in parts (2) and (3) of Theorem 4.2.1, and then it is understood
that a € 1 (see Remark 4.1.10). But, in part (1) of Theorem 4.2.1, the term "a € ¢,”

is necessary and must be mentioned in the formulae of a-dual of p(A).
Corollary 4.2.3 We have the following facts:

(1) Ifa € {u(A)}*; then (nR,11) € co, (Ruy100(y)) € co and (Rup104(|y])) € co for

ally € p.
(2) Ifa e {u(A)}’; then (Ry104(y)) € co and (Ruy10,(|y])) € co for all y € p.
(3) Ifa e {u(A)}7; then (Ry110,(y)) € loo and (Ryut104(]y])) € loo for all y € p.

Proof. For (1), let a € {u(A)}*. Then a € ¢; and R € ¢; (by Theorem 4.2.1) and so

(nRy41) € ¢o (by Remark 4.1.4 or Theorem 4.1.9). Thus, for every y € u C lo, we

have |y,| < [|y]l < 00 and so |0, ()| < on(|y]) < nlly||s for all n. This implies that
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0 < Rusa|on(®)| < Ru10a(ly]) < nRosllylle = 0as n — oo
which proves (1).

For (2), let a € {u(A)}? and take any y € p which implies that (o,(y)/n) € .
Then, one of the sequences (nR, 1) or (0,(y)/n) is bounded and the other tends to
zero. Thus (Ru410,(y)) = (nRy11)(on(y)/n) € co, that is (Ry110,(y)) € ¢o for all
y € u and hence (R,110,(|y])) € o forally € p (y € p = |y| € u). Finally, part

(3) can be proved same as part (1) with (nR,;1) € s instead of (nR, 1) € co. O

Corollary 4.2.4 We have the following:
{u(A)Y ={a €ty Rely and (zyRpui1) € co for all x € p(A)}
={a€ly:Rel and (Ruy10.(|y|)) € co for all y € u},
{W(A)} ={a€ty: Rely and (x,Ryt1) € loo for all x € p(A)}
={ael;:Rely and (Rui10,(]y])) € loo for all y € pu}.
Proof. This result can be proved same as Corollary 4.2.3 (note that: all these formulae

are equal to each others when p = ¢p). a

4.3 Duality For pu(A*)

In the last section, we shall apply the results of previous sections to the new
A-difference spaces p(A%) in order to conclude their a-, 8- and ~-duls.

As usual, the notations given by (4.1.1) and (4.1.7) will be used, where a € ¢,
(as {u(AM)} C £;). Besides, the sequence v = (v;) of non-negative real numbers was
defined by (3.2.1) as follows:

Further, every sequence x = (x) € w will be connected with another sequence

y = (yx) by the relation y = A(x), and we then say that y is the sequence connected
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with « by y = A(x) which, together with (2.2.7), yields that

e = Ap(z) = Ap(x) — Ap1(z) and  Ag(x) = ox(y) (k>1).

Thus, with help of (2.2.2) and (2.2.9), we have z; = A\ Y_5_,15) /A (k> 1)

which can equivalently be written as in (3.2.6) by using (1.1.2), that is

k
ve=vgk+ Yy (k>1), (4.3.2)

Jj=1

Now, from Theorem 2.2.7 and (2) of Remark 2.2.9, we deduce the following:

Lemma 4.3.1 Two sequences x and y are connected by y = A(z) if and only if (4.3.2)
is satisfied. In such case: x € p(A*) if and only if y € u. Further, for every x € u(AY)
there exists a unique y € p connected with x by y = /~\(:p), and conversely for every

y € p there exists a unique z € (A given by (4.3.2) and so y = A(x).

Here and in what follows, we shall assume that x and y are connected by y = /~\(x)

which implies the validity of (4.3.2) by which we find that

k

apTr = ARURYk + Ak Zyj (k=>1)
7j=1

and so we obtain (for every n > 1) that

n

Zakxk = Z(akvk + RY)yr and Z|akxk| < Z(|akvk| + Rkl
k=1 k=1

k=1 k=1
which can be used to derive the following relations in which n > 1:

n n

> larwe < (laxvi| + Bi)lyel = Boiron(lyl), (4.3.3)
k=1 k=1
> ek = (axvr + Ry — Rug10a(y), (4.3.4)
k=1 k=1
> | < |(arve + Ri)yi| + [Rosr0n(y)]- (4.3.5)
k=1 k=1
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Furthermore, let x = (x;) be given by x; = k + vy = A(kX\g)/A(N\g) for all .
Then, it follows by (3.2.4) that y, = Ap(x) = 1 (k > 1). Thus, by taking z;, = k + v
and yr = 1 in (4.3.4) and (4.3.5) for all k, we get the following:

n n n

> (k+vp)ar =Y (agor + By) =Y (agvp + Ry) — nRpp, (4.3.6)

k=1 k=1 k=1

n

> (k+ v

k=1

n

Z(akvk + R})

k=1

< Z:Zl\akvk + Ri| + [nRpsi] (4.3.7)

and on replacing a by |a| in (4.3.6), we obtain that

n n n

> (k+vo)lar] = (lawve] + By) = (larve| + Ri) = nRo. (4.3.8)

k=1 k=1 k=1
On other side, we have co(A*) C u(A*) (by Lemma 3.1.1) and from (3.3.9) we

have cp(A) C p(A*). Therefore, we deduce the following satisfied inclusions:
{1(AN} C {eo(A)}  {eo(A)}7 and {u(AN} C {co(AY)} C {eo(AM}. (4.3.9)

Now, we prove the following result which shows that a € {u(A)}? and av € ¢, are
necessary conditions in order that a € {u(A*)}?, where § = a, 3 or v, and p = cy, c

or {+ (and it will be shown latter that these conditions are also sufficient).
Lemma 4.3.2 We have the following facts:

(1) If a € {u(AM}?; then av = (ayvy) € 41.

(2)  The inclusion {(AM}0 C {u(A)}Y always holds.

Proof. For (1), let a € {u(A*)}Y be arbitrary. Then, it follows by (4.3.9) that
a € {co(A)}7 as well as a € {cg(AM)}. Thus a € ¢; and R € 41 (as a € {cy(A)} by
Theorem 4.2.1). Also, for any y € ¢y, let = () be given by (4.3.2). Then z € ¢y(A*)

and since a € {co(A*)}7; we get ax € bs and so (>_,_,axxx) € L. Further, it follows
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by (3) of Corollary 4.2.3 that (R,4+10,(y)) € ls (since y € ¢o and a € {co(A)}7).
Therefore, we have shown that (D> ;_ arzg) € lo as well as (R,410,(y)) € lo which
together with (4.3.4) imply that () ;_,(axvr + Ri)yx) € ls and this means that
(av + R)y € bs for all y € ¢y (as y € ¢y was arbitrary). Hence, we deduce that
av+ R € ¢} =/ and so av € {; (as R € {4).

Next, to prove (2), it is obvious that given inclusion is trivially satisfied when
0 = a or 7. To see that, we have {co(A)}? = {u(A)}Y when § = a or v (by Theorem
4.2.1), but {u(AM} C {co(A)} by (4.3.9) and so {u(AY)} C {u(A)}? for § = a or 7.
On other side, consider the case § = 3. Then, it is clear by (4.3.9) that {cy(A")}? C
{co(A)}P. Thus, it is remaining to show that {n(AM)}? C {n(A)}?, where n = ¢ or
{s. For this, take any a € {n(A*)}?. Then av € ¢; (by part (1)) and from (4.3.9) we
find that a € {co(A)}? and so a € ¢, as well as R € ¢; by Theorem 4.2.1. Besides,
we have A(k + v;) = e € n (Lemma 3.2.5) which means that (k 4+ v;) € n(A*) and
since a € {n(A*)}?; we obtain that (k+ v;)a € cs, that is (kay + azvy) € cs and hence
(kag) € cs (as av € ¢4 C c¢s). Therefore, we have already shown that a € ¢, (kay) € cs
and R € ¢, which leads us with Theorem 4.2.1 to deduce that a € {n(A)}?. This

means that {n(A*)}? C {n(A)}? which completes the proof. O

Theorem 4.3.3 For 6 = «, 3 or vy, the 0-duals of the spaces u(A*) are given by

{M(A’\)}e = {M(A)}g N{acw:avel},
where v = (Ag—1/A(Ng)) and p stands for any one of the spaces co, ¢ or lo.

Proof. We will prove that {u(A*)}Y = DY where D? = {u(A)}’ N{a € w: av € £, }.
For this, it is obvious by Lemma 4.3.2 that {u(A*)}? c D?. Thus, we have to prove

the converse inclusion. So, let a € DY be arbitrary and let’s show that a € {u(A*)}Y.
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For, take any = € p(A*) and let y = (yi) be the sequence connected by y = A(z).
Then y € p and since a € DY; we have av € ¢; and a € {u(A)}Y. Therefore, we have
three distinct cases which are § = «, 6 = 5 and 0 = 7.

In the first case (§ = «), we have a € {u(A)}* and so R € ¢, (by Theorem 4.2.1),
where a € ¢;. In such case, we have y € u, av € ¢, and R € ¢,. Thus, we deduce
that (> r_,(Jaxvx| + Ri)|yx|) € ¢ and (Ru10.(|y])) € co by (1) of Corollary 4.2.3.
Therefore, it follows by (4.3.3) that (> ;_;|axzk|) € le and so (D 7 _ |laxxi]) € ¢
which means that ax € ¢; for all x € u(A*) and hence a € {u(A*)}* which implies
that D™ C {u(AY)}.

Similarly, in the second case (6 = 3), we have a € {u(A)}? and so R € ¢, (by
Theorem 4.2.1) as well as (R,110,(y)) € ¢o by (2) of Corollary 4.2.3, where a € /.
Also, since y € 1 C b, av € £y and R € £y, we deduce that (Y ,_, (arvr + Ry)yx ) € ¢
and it follows by (4.3.4) that ()", _,arzr) € ¢ which means that ax € cs for all
x € p(A*) and so a € {u(AM)}? which implies that D? C {u(AM}P.

Finally, in the third case ( = 7), we have y € u C ly, av € ¢; and R € {;
(a € ¢1). Thus, we deduce that (Y ;_,|(arvr + Ri)yx|) € loo and (Rp4104(y)) € loo-
Hence, it follows by (4.3.5) that (> ,_ axxx) € lo which means that ax € bs for all
z € u(A*) and so a € {u(A*)}? which implies that D7 C {u(A*)}?. Consequently

DY C {u(AM)}? which yields the equality {u(A*)}Y = DY and we have done. O
Furthermore, let p = 3 or «. Then, it follows by Theorem 4.3.3 that
a € {u(AM} <= a € {u(A)}? and av € 4
which can equivalently be written as follows:
a € {u(AM}Y <= ac{u(A)} and av+ R /(.
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To see that, it is obvious that if R € ¢1; then: av € {1 <= av + R € ¢;. That
is av € {1 <= av + R € {; (provided that R € ¢;). Besides, we have R € {; in both
sides of above equivalence, since each of a € {u(A)}* or a € {u(A*)}* implies R € ¢,

by Theorem 4.2.1 and Lemma 4.3.2. This leads us to conclude the following:

Corollary 4.3.4 For p = 3 or 7, the p-duals of the spaces u(A*) are given by
{n(AM} = {u(A)Y n{a €w: av+ R(a) € 4},

where R(a) and v are respectively given by (4.1.1) and (4.3.1).

Theorem 4.3.5 Let pu be any of the spaces ¢y, ¢ or L. Then, we have the following:

(1) The a-duals of u(A*) are given by
{W(AMNY = {a €ty : R€ty and av € {,}
= {a €l (kay) € l; and av € (;}.
(2) The B-duals of u(A*) are given by
{co(AMNY ={a €ty : (kRps1) € los, RE {1 and av € (1}

={a€ly: (kay) € bs, R € {y and av € {,}.

(AN ={a ety : (kRy1) € co, RE 4y and av € 11}
={ael;: (kay) € cs, R € {y and av € {1},
where n(AN) stands for any of the spaces c(A*) or o (AN).
(3) The y-duals of u(A*) are given by
{W(AMY ={a €ty : (kRy11) € lo, RE Ly and av € {1}
={a€ly: (kag) € bs, R € {; and av € {1},
where v = (Me_1/A)), R = (Ry) and R = (Ry) such that R), = > ioklas| and
R, = Z;‘;kaj foralln > 1.
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Proof. It is immediate by combining Theorems 4.2.1 and 4.3.3 . O

Remark 4.3.6 From Theorem 4.3.5, we note the following:

(1) {co(AMYP = {co(AM)}, {c(AM} = {lo(AM)}? for = «, B and v, while
{co(AM} = {n(AM)}? for only § = o and ~y, where 1 = ¢ or (4.

(2) By Remarks 4.1.10 and 4.2.2, the term "a € ¢;” is necessary and must be mentioned
in the formulae of the a-duals of ;(A*) given in part (1) of Theorem 4.3.5, and so it
is not redundant or superfluous. But in parts (2) and (3) of Theorem 4.3.5, the term

”a € {,” can be replaced by ”a € cs” in the formulae of the 3- and ~-duals of u(A*).
Moreover, by using Theorem 3.2.9 and Corollary 4.2.4, we deduce the following:

Corollary 4.3.7 We have the following:

{n(A}* ={a € b ((k+v)ar) € (i} = {(ar/(k +ve)) : a = (ax) € (1},

{WAMNY ={acty: Rety, av € {1 and (2,Rny1) € ¢ for all 2 € p(A)}
={ael;:Rel,av ety and (Ry1104(|y])) € o for all y € u},

{WAMMNY ={acty: Ry, av € £; and (2, Rpp1) € L for all 2 € p(A)}
={a€l;:Rely,av € ly and (Ru110,(|y])) € ls for all y € p}.

Corollary 4.3.8 We have the following facts:

(1) Ifa € {u(AM)}*; then (nR,41) € co and we have the following:

Z (k + vg)|ax| = hm Z larvp| + RY) = Z larv| + Ry),
k=1 k=1

Z|ak$k| < lim Z |arve] + By)lyi| = Z(Iakvkl + Ri) |yl

k=1

where z € p(AY) and y = A(x).
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(2) If a € {u(AM}Y; then we have the following:

sup Z|akvk + Rp| < Z\akvk + Ry| + Sup [nR,11] < o0,

k=1
sup Z(/f—l—vk ap| < Z|akvk + Ry| + sup\anH] < 00,

" k=1 k=1

sup Zakﬂﬁk < Z| arvg + Ri)ye| + Sup‘Rn+10n( )| < o0,
" k=1

where z € p(AN) and y = A(x).

Proof. We have {u(AM}? C {u(A)}Y by Lemma 4.3.2. Thus, by using Corollaries
4.2.3 and 4.3.7, we deduce this result, where part (1) is immediate by (4.3.3) and

(4.3.8), and part (2) is obtained from (4.3.5) and (4.3.7). O

Corollary 4.3.9 We have the following facts:
(1) Ifa € {u(AN}P; then for every x € p(A*) with y = A(x), we have
Zakxk = T}Lm Z axv + Rp)yr = kz_; arvr + Ry)y

(2) In particular, if a € {n(A*)}? (n = c or l); then we have the additional equalities:

n

; (k4 v)ax = JLIEOZ(akvk+Rk = Z (arve + Ry),

k=1 k=1

hIH Z’&k’l}k + Rk‘ = hm Z\akvk -+ Rk’ = Z\akvk + Rkl

k=1

Proof. It is same as the proof of Corollary 4.3.8, part (1) is obtained from (4.3.4), and
part (2) is immediate by (4.3.6) and noting that

‘ ]akvk + RZ‘ - |ak'0k + Rk‘ ’ S ‘RZ — Rk’ = ‘Rn+1’ (1 S k S n) a

Remark 4.3.10 It must be noted that Theorem 4.3.5 is reduced to Theorem 4.2.1

with v = 0. That is, the #-duals of u(A), as in Theorem 4.2.1, can be obtained from
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f-duals of j(A*), as in Theorem 4.3.5, with assuming that v;, = 0 for all k& (Corollary
4.3.7 is also reduced to Corollary 4.2.4). So, similar results of those in Corollaries 4.3.8
and 4.3.9 can be obtained for u(A) instead of (A*) by taking vy, = 0 with v, = A(zy)
instead of y, = Ag(z) for all k, where z € p(A) in place of z € u(A*). For instance,
if a € {p(A)}?; then for every x € u(A), the relations given in Corollary 4.3.9 are

satisfied with vy = 0 and y, = A(xy,) for all k, and the same for a € {n(A)}”.
Corollary 4.3.11 If v € ly; then {u(AM)}0 = {u(A)} for 6 = «, 8 and 7.

Proof. It is enough to show that if v € f,; then {u(A)} C {a € w: av € {4}
and so {u(AM}Y = {u(A)}Y by Theorem 4.3.3 (in such case, the condition av € /; is
redundant and so {u(A*)}? is reduced to {u(A)}Y). For this, suppose that v € /.
Then, for every a € {u(A)}?, we have a € ¢; (by Theorem 4.2.1) which implies av €

(as v € £y). Thus, we deduce that {u(A)} C {a € w:av € 1} when v € £. O
Finally, at the end of this chapter, we may observe the following:

(1) Obviously, the inclusions co(A) C co(AY) and loo(A) C loo(AY) imply both of
inclusions {co(AM)}? C {co(A)}? and {loo(AM} C {loo(A)}P. This is compatible
with Lemma 4.3.2, but Lemma 4.3.2 tells us also that {c(AM)}Y C {c(A)}? while the
inclusion ¢(A) C ¢(A*) need not be held. The justification can be understood in light
of the equalities {c(A)}Y = {lo(A)}? and {c(AM}? = {{.(AM)}P. To see that, we

have {c(AM)} = {£oc(AY)}" C {xc(A)} = {c(A)}’.

(2) If v € flyo; then co(A*) = cp(A) and loo(A?) = £oo(A) (Theorem 3.3.10). This
implies that {co(AM)}Y = {co(A)}? and {lo(AY)}? = {lo(A)}Y which is compatible
with Corollary 4.3.11, but Corollary 4.3.11 tells us also that {c(A*)}Y = {c(A)}° while

the equality c(A*) = ¢(A) need not be satisfied. Again, this can similarly be justified.
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Chapter 5
CERTAIN MATRIX OPERATORS




5 CERTAIN MATRIX OPERATORS

The last chapter is devoted to characterize some new matrix classes and matrix opera-
tors related to our A-difference spaces 1(A*) of bounded, convergent and null difference
sequences, where p stands for any of the spaces ¢y, ¢ or . That is, the necessary and
sufficient conditions for an infinite matrix A to act on, into and between our spaces
will be deduced. This chapter is divided into three sections, the first is to charac-
terize matrix operators on our spaces, the second is for matrix operators into these
spaces and the last is for matrix operators between them. The materials of this chap-

ter are part of our research paper* which has been published in the Ijrdo J. Math. 2022.

5.1 Matrix Operators On pu(A*)

In this section, we obtain the necessary and sufficient conditions for an infinite
matrix A to act on the \-difference spaces pu(A*).
Every infinite matrix A = [a,x] will be associated with another infinite matrix

A =[Gy, called as the matriz associated with A, which can be defined in terms of A

as follows:
_ Ak—1 >
I S . k> 1), 5.1.1
Qnk /\k_)\k—lak—i_jzkaj (TL ) ( )

where A, € ¢; for all n > 1. That is, the associated matrix A = [@,x] can be defined
with help of our conventions given by (4.1.1) and (4.3.1) as follows:

Qnk, = Uglng + Ri(Apn) = vkang + Rk (n,k>1),

*A.K. Noman and O.H. Al-Sabri, Matriz operators on the new spaces of \-difference sequences,
Tjrdo J. Math., 8(1) (2022), 1-22.
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where v = (vg) = (MNe—1/A(M))s A = (ank)p; is the n-th row sequence in A (n > 1)

and [R,x] is an infinite matrix defined via A by R,x = Rg(A,) for all n,k > 1, that is

Ak—1 -
V. = m and Rnk = ]Z;am (TL, k Z 1)

Further, we assume the sequences x,y € w are connected by the relation y = /~\(a:)
Thus z € u(A*) <= y € u (see Lemma 4.3.1). So, by using (4.3.2) with the same

technique by which the relation (4.3.4) has been derived, we obtain that
D ankth = > _ankyk — RBomi1 0m(y) (n,m > 1).
k=1 k=1
Moreover, if A, € {u(A*)}? for every n > 1; then it follows, by (2) of Theorem
4.3.5, that A, € 01, vA, € {1 and R(A,) = (Rux)72, € ¢4 for all n. Also, we must have
A, € ¢y and lim,, .. Ry m+10m(y) = 0 for all n and every y € u (see Corollaries 4.2.3

and 4.3.4), where A,, = (@), is the n-th row sequence in the associated matrix A

for each n > 1, that is
A, =vA, + R(A,) = (ankor + Rnk)zozl (n>1).

Thus, by going to the limits in both sides of above equality as m — oo, we get the

following (see (1) of Corollary 4.3.9):

> e = nkyr (n>1) (5.1.2)
k=1 k=1

which means that A,(z) = A,(y) for all n, and so A(z) = A(y) for all z € u(A*)
and y € p which are connected by y = A(x). This also means that A(z) € X for
every x € pu(A*) if and only if fl(y) € X for every y € u, where X is any sequence
space. Thus, we immediately deduce the following useful results which will be used to

characterize matrix operators on the A-difference spaces.
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Lemma 5.1.1 For any infinite matriz A, let A be its associated matriz defined by
(5.1.1). Then, for each n > 1, we have A, € {u(AM)}’ if and only if A, € {u(A)}?
and A, € 1P, where i =0, (u = co, ¢ or ls). Further, if A, € {u(AM}Y? for every

n > 1; then A(z) = A(y) for allz € u(A) andy € p which are connected by y = A(z).

Proof. Let n > 1. Then, by using Theorem 4.3.5 and Corollary 4.3.4 with A,, instead

of a, we deduce the following:
A, € {u(AMY = A, € {u(A)}’ and vA, + R(A,) € (,
—= A, € {u(A)}’ and A, €’
where 1# = ¢, (as p = ¢g, ¢ or {y) and A, = vA, + R(A,) for all n. Further, if
A, € {(AM}P for every n > 1; then it follows by (5.1.2) that A(z) = A(y) for all

z € u(A*) and y € pu which are connected by i = A(z). This ends the proof. a

Theorem 5.1.2 For any sequence space X and every infinite matriz A, the following

statements are equivalent to each others:
(1) A€ (uAah),X).
(2) A, € {(AMY for every n > 1 and A(y) € X for all y € pu.
(3) A, € {u(A)} for everyn >1 and A € (u, X).

Proof. Suppose that (1) is satisfied, that is A € (u(A*), X). Then A, € {u(A*M}? for
every n > 1 and A(z) € X for all z € u(A*) (Lemma 1.3.6). Thus, for every y € pu, let
& = (x) be given by (4.3.2). Then = € p(A*) such that y = A(z) and so A(y) € X (as
A(z) = A(y) by Lemma 5.1.1) and since y € p was arbitrary; we find that A(y) € X
for all y € p. Hence, we have A, € {u(A*)}? for every n > 1 and A(y) € X for all

y € p which is (2), that is (1) = (2).
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Further, assume that (2) is satisfied, that is A4, € {u(A*)}? for every n > 1 and
A(y) € X for all y € pu. This, together with Lemma 5.1.1, implies that A, € {u(A)}?
and A, € pf for every n > 1 as well as A(y) € X for all y € . Hence, we deduce that
A, € {u(A)}P for every n > 1 and A € (1, X) which is (3), that is (2) = (3).

Finally, suppose that (3) is satisfied, that is A, € {u(A)}? for every n > 1 and

A € (1, X). This means that A, € {u(A)} and A, € pf for every n > 1 as well
as A(y) € X for all y € pu. Hence, it follows by Lemma 5.1.1 that A, € {u(AM)}?
for every n > 1. Besides, for every x € pu(A*), let y = A(z). Then y € p and
A(z) = A(y) by (5.1.2) which implies that A(z) € X for all # € u(A*). Therefore, we
have A, € {u(AM)}? for every n > 1 and A(z) € X for all x € u(A*). This means

that A € (u(A*), X) which is (1), that is (3) = (1). This completes the proof. O

Now, by using (5.1.1), let’s consider the following conditions (note that: the first
five conditions are obtained from Lemma 5.1.1 while the last eight conditions are

obtained from Lemmas 1.3.8, 1.3.9, 1.3.10 and 1.3.11):

oo
Z|ank\ converges for every n > 1 (5.1.3)
k=1

k Z anj> € lo for every n > 1 (5.1.4)

(k; Z anj) € ¢ for every n > 1 (5.1.5)

k=1
Z a,;| converges for every n > 1 (5.1.6)
k=1 | j=k
ank’ converges for every n > 1 (5.1.7)
k=1
sup Y |anx| < o0 (5.1.8)
"ok=1

104



lim a,, = a, exists for every k > 1 (5.1.9)

n—oo

lim ) G, = a exists (5.1.10)
lim ) | — x| =0 (5.1.11)
lim @, =0 for every k > 1 (5.1.12)
n—oo

lim > G, = 0 (5.1.13)
lim ) k| = 0 (5.1.14)

0o P

sup Y Y S| < oo for p>1, (5.1.15)
Kek 21 kek

where K stands for the collection of all non-empty finite subsets of positive integers.

Then, by using Theorems 4.2.1, 4.3.5 and Lemma 5.1.1, we find that
A, € {co(A)} for every n > 1 <= (5.1.3), (5.1.4) and (5.1.6) are satisfied,

A, € {n(A)}? for every n > 1 <= (5.1.3), (5.1.5) and (5.1.6) are satisfied,
A, € {co(AMY? for every n > 1 <= (5.1.3),(5.1.4), (5.1.6) and (5.1.7) are satisfied,
A, € {n(AM}P for every n > 1 <= (5.1.3),(5.1.5), (5.1.6) and (5.1.7) are satisfied,

where 7 stands for any of the spaces ¢ or £, (also, it is obvious by Corollary 4.2.3 that
conditions (5.1.4) and (5.1.5), in above equivalences, can be replaced by only one con-
dition, viz: limy_,oo o (y) Z;’ikﬂam =0 for all y € u and every n > 1). Therefore, by
using Theorem 5.1.2 with help of Lemmas 1.3.8, 1.3.9, 1.3.10 and 1.3.11 characterizing
matrix operators between the classical sequence spaces, we can immediately deduce
the following new consequences characterizing matrix operators on the spaces p(A*)

of A-difference sequences.
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Corollary 5.1.3 For an infinite matriz A, we have the following:

(1) A € (co(AY), Ls) if and only if (5.1.3), (5.1.4), (5.1.6) and (5.1.8) are satisfied.
(2) A € (n(A*), L) if and only if (5.1.3), (5.1.5), (5.1.6) and (5.1.8) are satisfied.
Proof. This result follows from Theorem 5.1.2 and Lemma 1.3.9, since A € (1, o) <=
(5.1.8) holds (note that: (c(A%),ls) = (foo(AM), £s) by part (2), as n =cor £y). O
Corollary 5.1.4 For an infinite matriz A, we have the following:

(1) A € (co(A%),¢) if and only if (5.1.3), (5.1.4), (5.1.6), (5.1.8) and (5.1.9) are
satisfied.  Further, if A € (co(A%),¢); then lim, oo An(x) = Y oo, aryr for every
x € u(A*), where yp = Ak(x) and aj, = lim,,_,o an for all k.

(2) A € (c(A%), ) if and only if (5.1.3), (5.1.5), (5.1.6), (5.1.8), (5.1.9) and (5.1.10) are
satisfied. Further, if A € (c(A*),¢); then limy, oo Ap(x) = L(@— Y pey k) + Y pey GkYk
for every x € p(AY), where y = A(z), L = limy_o0 Ap(x) and a = lim,,_,o > pe ) G-
(3) A€ (loo(AY), ¢) if and only if (5.1.3), (5.1.5), (5.1.6), (5.1.8), (5.1.9) and (5.1.11)
are satisfied. Further, if A € ((so(A%),¢); then limy, oo An(x) = > oo, aryx for every

z € p(AY), where y = A(z).

Proof. It is immediate by Theorem 5.1.2 and Lemma 1.3.10 with noting that:

(1) A € (c,¢) <= (5.1.8) and (5.1.9) are satisfied. (2) A € (¢,¢) <= (5.1.8), (5.1.9)

and (5.1.10) hold. (3) A € ({,¢) <= (5.1.8), (5.1.9) and (5.1.11) are satisfied. = O
Corollary 5.1.5 For an infinite matriz A, we have the following:

(1) A € (co(AY),co) if and only if (5.1.3), (5.1.4), (5.1.6), (5.1.8) and (5.1.12) are

satisfied.

(2) A € (c(AY), co) if and only if (5.1.3), (5.1.5), (5.1.6), (5.1.8), (5.1.12) and (5.1.13)

are satisfied.
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(3) A € (Loo(AY), co) if and only if (5.1.3), (5.1.5), (5.1.6) and (5.1.14) are satisfied.

Proof. This follows by Theorem 5.1.2 and Lemma 1.3.11 with observing that:

(1) A € (co, o) <= (5.1.8) and (5.1.12) satisfied. (2) A € (¢, cy) <= (5.1.8), (5.1.12)

and (5.1.13) hold. (3) A € (£s, o) <= (5.1.14) holds. m
Corollary 5.1.6 Let A be an infinite matriz. Then, for every p > 1, we have:

(1) A € (co(AY),4,) if and only if (5.1.3), (5.1.4), (5.1.6), (5.1.7) and (5.1.15) are

satisfied.

(2) A € (n(AM),4,) if and only if (5.1.3), (5.1.5), (5.1.6), (5.1.7) and (5.1.15) are

satisfied.

Proof. This follows from Theorem 5.1.2 and Lemma 1.3.8 with noting that: A €
(p, £y) <= (5.1.15) holds (note that: (c(AY),£,) = ({s(A),£,) for p > 1 by part (2),

as N =cor {y). O

Further, in the light of Remark 4.3.10, it must be noted that Corollaries 5.1.3,
5.1.4, 5.1.5 and 5.1.6 can be reduced, with assumption v = 0, to characterize matrix

operators on the usual difference spaces p(A) as follows:

Corollary 5.1.7 The necessary and sufficient conditions for an infinite matriz A in
order to belong to any of the classes (u(A),ls), (W(A),¢), (W(A), co) or (u(A),4,) are
those conditions given respectively in Corollary 5.1.3,5.1.4,5.1.5 or 5.1.6 by removing

condition (5.1.6) and taking an, = Rux = Z;’ik an; for allm,k > 1, where p > 1.

Finally, it is obvious that Corollary 5.1.7 has various consequences concerning
with the particular cases of the space u, where p is any of the spaces ¢, ¢ or o, (also,
in Corollary 5.1.7, the condition (5.1.6) is redundant, as it is reduced to (5.1.7) and

implied by (5.1.8)).

107



5.2 Matrix Operators Into u(A*)

In this section, we conclude the necessary and sufficient conditions for an infinite
matrix A to act from any sequence space into the A-difference spaces p(A?).
For this, we will apply the useful result in part (3) of Lemma 1.3.7 to the new

spaces j(A*). This leads us to the following theorem:

Theorem 5.2.1 Let X be a sequence space and for any infinite matriz A = |ang| define
the matriz B = [byy| by

A(An)
)\n

1 n—1
b = awe+ A () AN)ap  (nk > 1).

A,/ £~j=0
Then A € (X, u(A%)) if and only if B € (X, ), where u stands for any of the spaces

co, ¢ or Uy, and (A is the respective one of the spaces co(AY), c(AN) or Lo (AY).

Proof. This result is immediate by (3) of Lemma 1.3.7 with using (2.2.6), where

B=AA. O

In the particular case of Theorem 5.2.1, if X is any of the classical sequence spaces;

then we obtain the following corollary:

Corollary 5.2.2 Let A be an infinite matriz and define the matric B = [bni] by

A(\) 1\
b = 57 it A(A—n>ZjOA()\j) ap  (nk>1).

Then A belongs to any one of the classes (co, u(AY)), (¢, (AY)), (loo, u(AY)) or
(€p, t(AN)) if and only if B belongs to the respective one of the classes (co, i), (¢, ),

(loo, 1) or (L, i), where p > 1 and p stands for any of the spaces ¢y, ¢ or lu.

More precisely, by using the conditions given in Lemmas 1.3.9, 1.3.10, 1.3.11 and
1.3.12 which characterize the matrix classes (co, 1), (¢, 1), (loo, ) and (€, 1), where

1 < p < 00, we obtain the conditions:
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sup Zkzl\bnk] < 00 (5.2.1)

lim b, = by exists for every k > 1 (5.2.2)

n—oo

lim Zk:ank — bl =0 (5.2.3)
nlglolo Zk:1bn’“ = b exists (5.2.4)
lim Zkzl\bnky =0 (5.2.5)
lim b, = 0 for every k£ > 1 (5.2.6)
n—oo

lim Zk:lbnk =0 (5.2.7)
sup |bpg| < 0o (5.2.8)
n, k

sup ) Jbu|” <00 (a=p/(p—1)). (5.2.9)

Now, with help of Lemmas 1.3.9, 1.3.10, 1.3.11 and 1.3.12, we immediately deduce

the following corollaries in which B = [b,,;] is the triangle defined in Corollary 5.2.2.

Corollary 5.2.3 We have (co,loo(AY)) = (¢, loo(AY)) = (loo, loo(AY)), and A €

(i, oo (AY)) if and only if (5.2.1) holds.
Proof. This result is immediate by Lemma 1.3.9 and Corollary 5.2.2. |

Corollary 5.2.4 We have the following:

(1) A€ (co,c(AY)) if and only if (5.2.1) and (5.2.2) hold. Further, if A € (co, c(AY));
then lim,,_ o An(A(x)) = oo bexy for all x € co.

(2) A € (c,c(AY) if and only if (5.2.1), (5.2.2) and (5.2.4). Furthermore, if A €

(¢, c(AY)); then lim,, o ]\n(A(a:)) = L(b > bk) + > o by for all x € ¢, where

L =limy_, o xj.
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(3) A€ (loo,c(AY) if and only if (5.2.1), (5.2.2) and (5.2.3) hold. Furthermore, if

A € (Loo, c(AN); then lim,, o Ay (A(2)) = S55°, by for all o € Lo

Proof. It follows from Lemma 1.3.10 and Corollary 5.2.2. O
Corollary 5.2.5 We have the following:

(1) A€ (le,co(AY)) if and only if (5.2.5) holds.

(2) A€ (c,co(AY) if and only if (5.2.1), (5.2.6) and (5.2.7) hold.

(3) A€ (co,co(AY) if and only if (5.2.1) and (5.2.6) hold.

Proof. This result is obtained by Lemma 1.3.11 and Corollary 5.2.2. O
Corollary 5.2.6 We have the following:

(1) A€ (01,0.0(AY)) if and only if (5.2.8) holds.

(2) A€ (b1, c(AY)) if and only if (5.2.2) and (5.2.8) hold.

(3) A€ (f1,co(AY)) if and only if (5.2.6) and (5.2.8) hold.

Proof. This result is immediate by Lemma 1.3.12 and Corollary 5.2.2. O
Corollary 5.2.7 Let 1 < p < oo and ¢ =p/(p—1). Then, we have the following:
(1) A€ (), l(AY)) if and only if (5.2.9) holds.

(2) A€ (€,,c(AY) if and only if (5.2.2) and (5.2.9) hold.

(3) A€ (€y,co(AY)) if and only if (5.2.6) and (5.2.9) hold.

Proof. It is immediate by Lemma 1.3.13 and Corollary 5.2.2. O
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5.3 Matrix Operators Between pu(A?*)

In this final section, we apply our main results to some particular cases. Also, we
conclude the necessary and sufficient conditions for an infinite matrix A to act between
the new A-difference spaces.

First, we will apply (3) of Lemma 1.3.7 to the main results in previous section in
order to characterize the matrix operators acting from p(A*) into the matrix domains
of triangles, and then we will obtain the characterizations of matrix operators between
two A-difference spaces as particular cases.

At the beginning, by using (3) of Lemma 1.3.7, we conclude the following theorem:

Theorem 5.3.1 Let X be a sequence space, T = [t,x] a triangle and for any infinite

matric A = [a,x] define the matriz B = [buy| by

bnk = Z]thn] ajk (n, ]{7 Z 1)

Then A € (u(AN), X7) if and only if B € (u(A*), X), where u stands for any of the

spaces cg, ¢ o1 Lao, and u(A*) is co(A*), c(A*) or Lo (AY), respectively.

Proof. This result is immediate by (3) of Lemma 1.3.7, where B = T'A. O

Now, by combining Theorems 5.1.2 and 5.3.1, we can obtain various consequences

concerning with the particular cases of the space X and the triangle T'. For instance, we

have ¢sg = (¢)oy €5 = (€)gy bS = (bo)os Co(A) = (co)a, ¢(A) = (), loo(A) = (lo)a

and bv, = (,)a for p > 1. Therefore, we deduce the following particular cases:

Corollary 5.3.2 Let A be an infinite matriz and define the matrices [buy,] and [buy] by

- A
bnk = Ank — An-1,k and bnk /\k; k)\lk nk + E ik n (n7 k Z 1)a
- 1
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where the series > -, buy converge for all n. Then, the necessary and sufficient condi-
tions in order that A belongs to any one of the classes (u(A*), loo(A)), (1(AY), c(A)),
(LAY, co(A)) or (w(AY), bu,) are those conditions given respectively in Corollary 5.1.3,
5.1.4, 5.1.5 or 5.1.6 provided that the entries a,, and a, are respectively replaced by

bk and l;nk for alln,k > 1, wherep > 1.
Corollary 5.3.3 Let A be an infinite matriz and define the matrices [buy] and [byy] by

_ " 7 Ak—1
bnk—zjzlajk and  bpy = ———— N nk+2] . bnj (n,k >1),

where the series Y -, by, converge for all n. Then, the necessary and sufficient con-
ditions in order that A belongs to any one of the classes (u(AM),bs), (u(A*),cs) or
(u(A*), eso) are those conditions given respectively in Corollary 5.1.3, 5.1.4 or 5.1.5

provided that the entries an, and a,p are respectively replaced by by, and l;nk for all

n,k>1.

Finally, we conclude our work with the following corollaries characterizing matrix
operators between two sequence spaces of A-type. For this, let X = (\}) be a strictly
increasing sequence of positive real numbers (A and A need not be equal). Then, we

define j(AY) = (u)ar, where A’ is the triangle defined by (2.2.4) with )\ instead of .

So, we deduce the following consequences:

Corollary 5.3.4 Let A be an infinite matriz and define the matrices [buy] and [byy] by

AN
A

n—1

bnk = Qnk + A(/\/ ) A()\,) Ak (n, k> 1),

S

Ak
n n nj 7k217
SRR VR Vi k+sz J (n )

where the series > oo bop converge for all n > 1. Then, the necessary and suffi-

cient conditions in order that A belongs to any one of the classes ((A*), Lo (AN)),
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(AN, c(AN)) or (u(AN), co(AN)) are those conditions given respectively in Corollary
5.1.3, 5.1.4 or 5.1.5 provided that a,, and a,x, are respectively replaced by by, and Enk

foralln, k> 1.

Corollary 5.3.5 Let A be an infinite matriz and define the matrices [byi] and [bux] by

)\kz—l

bk, = " Z A(N)) aj, and by, = N s buk + ijkbnj (n,k > 1),

where the series Y ;- by, converge for all n. Then, the necessary and sufficient con-
ditions in order that A belongs to any one of the classes (u(AM),0)), (u(A*), M),
((AY), ") or (W(AY), £3') are those conditions given respectively in Corollary 5.1.5,
5.1.6, 5.1.7 or 5.1.8 provided that a,, and a,x, are respectively replaced by by, and lN)nk

foralln,k > 1, where 1 < p < 0.

113



CONCLUSION




CONCLUSION

The A-sequence spaces have proved their useful in some subjects of analysis with various
applications in operator theory and measure of non-compactness [10, 49], in the spectral
theory [71, 72], in summability theory [14, 62] and in the theory of double sequences
[1, 20, 42, 57, 73] and many researchers and authors, around the world, are working in
these interesting spaces of A-type (e.g., see [9, 15, 21, 23, 29, 75]).

Now, by adding our contribution to the literature, the new A-difference spaces of
bounded, convergent and null difference sequences have been introduced, their topo-
logical, algebraic and isomorphic properties have been studied, their inclusion relations
and Schauder bases have been established, their Kéthe-Toeplitz dual spaces have been
constructed and their matrix operators characterized. This gives an open scope and
a new area for additional future research studies. For instance, the study of com-
pact operators and some fixed point theorems and spectrum theorems on our new
spaces with some applications in differential equations and numerical analysis (see
[10, 39, 50, 58, 59, 61, 71, 72] for such studies).

So, at the end of this thesis, I suggest the researchers to continue in study of our
new sequence spaces and their matrix transformations to solve many open problems

still left in the literature of the theory of A\-sequence spaces.
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LIST OF SYMBOLS

the scalar field R or C
positive integers
sequences

k-term of x

difference sequence of x
sum sequence of x

the space of all sequences
sequence spaces

norm

Kothe-Toeplitz duals of X
a-dual of X

[-dual of X

~v-dual of X

matrices

entries of A

A-transform of x

band matrix of difference
sum matrix

matrix class

matrix domain of A in X
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=

X)\

A-sequence

A-matrix

A-matrix

A-sequence space

space of bounded sequences
space of convergent sequences

space of null sequences

space of sequences associated with p-absolutely convergent series

space of sequences with p-bounded variation

space of sequences associated with bounded series
space of sequences associated with convergent series
space of sequences associated with null series

space of bounded difference sequences

space of convergent difference sequences

space of null difference sequences

M-difference space of bounded difference sequences
A-difference space of convergent difference sequences
A-difference space of null difference sequences

the space cg, ¢ or

the space lo(A), c(A) or co(A)

the space (oo (A%), ¢(A*) or ¢o(A?)

the space ¢ or /o,

the space ¢(A) or £ (A)

the space c(A*) or £ (AY)
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