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CHAPTER 1

Introduction



1.1 Introduction

The field of graph theory is one of the ever growing branch of mathematics.

Graph theory, in its essence can be described as the study of relations on finite

sets, which are visualized with vertices and edges in a two dimensional plane. Graph

theory is intimately related to many branches of mathematics, including group theory,

probability, numerical analysis, matrix theory, topology, operational research, combinatorics

and many more.

The origin of graph theory can be traced back to Eulers [28] work on the Konigsberg

bridges problem (1735), which subsequently led to the concept of an Eulerian graph.

Euler studied the problem of Konigsberg bridge and constructed a structure to solve

the problem called Eulerian graph [12].

Figure 1.1: The bridge of Konigsberg
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In the recent years, great attention have been paid to the modeling and analysis

of the spread of belief or influence in complex networks. Various problems in social

and virtual networks such as world wide web or models of distributed computing can

be formalized in terms of the spread of influence, for example:

• Elections in societies.

Figure 1.2: Elections in societies

• Spread of disease among people.

Figure 1.3: Spread of disease
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• Spread of virus in world wide web or any web of computers.

Figure 1.4: Virus in web

• Spread of opinions across social networking sites like Twitter, Facebook and etc.

Figure 1.5: Social media

A network in all of these examples which is simply consisted of a set of elements

(e.g. agents in social networks or computing units in distributed computing systems),
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and some relationships or interactions between these elements can be conveniently

modeled by a graph G(V,E), whose vertex set V (G) represent the elements and

edges E(G) represent the links of the network, for more detail we refer to [28].

1.2 Basic definitions and terminologies of a graph

In this section, some basic definitions are collected from various books including the

books by Harary [28], Charttrand and Lesniak [16], and Bondy and Murthy [14].

Additional definitions will be given as they are needed.

Definition 1.2.1. [28] A graph G consists of a finite nonempty set V = V (G) of n

vertices together with a prescribed set E of m unordered pairs of distinct vertices of

V . Each pair e = {u, v} of vertices in E is an edge of G, u and v joined by e. We

write e = (u, v) or e = uv and say that u and v are adjacent vertices, u and e are

incident with each other, as are v and e. If two edges e1 and e2 of G are distinct

and incident with a common vertex, then they are adjacent edges. The order of G,

denoted by |V (G)| = n, is the number of vertices in G. The size of G, denoted by

|E(G)| = m, is the number of edges in G.

Definition 1.2.2. [14] If vertex set and edge set of G are finite, then G is finite. A

finite graph G having no loops or multiple edges is called a simple graph.

Example 1.2.3. In Figure 1.6, a graph G is an example of a simple graph with vertex
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set V (G) = {v1, v2, v3, v4, v5} and edge-set E(G) = {e1, e2, e3, e4, e5}. The order of G

is |V (G)| = 5 and the size of G is |E(G)| = 5.

x x

xx
x

v1 e1 v2

e2

v3

e3

v4e4

e5

v5

Figure 1.6: Simple graph

Definition 1.2.4. [33] A null graph or a totally disconnected graph is a graph

with nonempty vertex set and no edges.

Example 1.2.5. In Figure 1.7, a graph G is an example of a null graph.

x
x
x

x
x
x

x
x

x
x

n = 1 n = 2 n = 3 n = 4

Figure 1.7: Null graph
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Definition 1.2.6. [16] The degree of a vertex v is defined to be the number of edges

incident with v in a graph G, and is denoted by dG(v) or deg(v). The minimum

degree of a graph G is denoted by δ(G) and ∆(G) denotes the maximum degree of

G. A vertex of degree zero is called an isolated vertex or an isolate.

Example 1.2.7. In Figure 1.8, a graph G is a simple graph with vertex set V (G) =

{v1, v2, v3, v4, v5} and deg(v1) = 1, deg(v3) = deg(v4) = 2, deg(v2) = 4, deg(v5) = 3,

then δ(G) = 1 and ∆(G) = 4.

x x x
x

xv1 v2

v4

v3

v5

Figure 1.8: G

Definition 1.2.8. [33] A graph H = (V (H), E(H)) is a subgraph of a graph G =

(V (G), E(G)) if V (H) ⊆ V (G) and E(H) ⊆ E(G). If V (G) 6= V (H) or E(G) 6=

E(H), then we say that H is a proper subgraph of G or G is a super graph of H. A

subgraph H of G is called a spanning subgraph of G if V (G) = V (H). If C ⊆ V (G)

, then the induced subgraph [C] of G is the graph with vertex set C and such that

uv ∈ E(C) wheneveru, v ∈ C and uv ∈ E(G).
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Example 1.2.9. In Figure 1.9, H1 and H2 are subgraphs of G . Moreover, H1 is a

spanning subgraph of G and H2 is an induced subgraph of G.

x
x

x
x

x

x

x

x

x
x x

x
x

G

H1 H2

Figure 1.9: A graph G with its subgraphs H1 and H2

Definition 1.2.10. A path is a graph with vertex-set {v1, v2, ..., vn} and edge set

{v1v2, v2v3, ..., vn−1vn}, where the vi, 1 ≤ i ≤ n is are all distinct, and is denoted by

Pn = {v1, v2, ..., vn}. If G is a graph and u and v are vertices of G, then a path from

vertex u to vertex v is oftentimes called a u−v path. The cycle Cn = {c1, c2, ..., cn} is

the graph of order n ≥ 3 with vertices c1, c2, ..., cn and edges c1c2, c2c3, ..., cn−1cn, cnc1.

The distance d(u, v) in G of two vertices u, v is the length of a shortest u− v path in

G.

Example 1.2.11. Figure 1.10 shows the path P5 = {v1, v2, v3, v4, v5} of order 5 and

the cycle C5 = {u1, u2, u3, u4, u5} of order 5.

7



x x x x x
x
x x

x
x�

��

C5P5

Figure 1.10: P5 and C5

Definition 1.2.12. [16, 28] The distance between two vertices u and v in a graph

G is the number of edges in the shortest u − v path and is denoted by d(u, v). The

eccentricity e(v) of a vertex v ∈ V in a connected graph G is defined as e(v) =

max{d(v, u) : u ∈ V (G)}. The radius of G is the minimum eccentricity of the

vertices, and is denoted by r(G). The diameter diam(G) of a connected graph G is

defined as diam(G) = max{e(v) : v ∈ V (G)}.

Example 1.2.13. In Figure 1.8, a graph G is a simple graph with vertex set V (G) =

{v1, v2, v3, v4, v5} and d(v1, v4) = 2, e(v1) = 2, r(G) = 1, diam(G) = 2.

Definition 1.2.14. [28] A graph G is said to be connected if there exists a u − v

path for every two vertices u, v ∈ V (G). A graph G which is not connected is said to

be disconnected. A component of a graph G is a subgraph which is maximal with

respect to the property of being connected. A cut vertex of a graph G is a vertex

whose deletion increases the number of components, and a bridge is such an edge.
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Definition 1.2.15. [28] Two graphs G and H are isomorphic, denoted by G = H

or G ∼= H, if there exists a one-to-one correspondence between vertex sets of G and

H which preserves adjacency.

x

x x

x
x x

x x

x x

�
�

�
�

@
@
@@

�
�
�

�
�
�

��

G H

Figure 1.11: G ∼= H

Definition 1.2.16. [28] The complement G of a graph G has V (G) as its vertex

set, two vertices are adjacent in G if and only if they are not adjacent in G. A graph

G is called self-complementary if G and G are isomorphic. If every pair of vertices

of G are adjacent, then G is called a complete graph, and it is denoted by Kn with

n vertices.

Example 1.2.17. In Figure 1.12, K2, K3 and K4 are a complete graph .
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x x x x

x

x x

x x
@
@
@
@
@
@
@

�
�
�

�
�
�
�

J
J
J
J
J
J

K2 K3 K4

Figure 1.12: Complete graph G

x

x

x

x

x

x

x

x
@
@
@
@
@@

�
�

�
�
��

v1 v2

v3 v4

v1 v2

v3 v4
GG

Figure 1.13: Complement G of a graph G

Definition 1.2.18. [28] A graph G is called a bipartite graph if the vertex set V

can be partitioned into two subsets V1 and V2 such that every edge of G joins a vertex

of V1 with a vertex of V2. Furthermore, if every vertex of V1 is joined to every vertex

of V2, then G is a complete bipartite graph. The complete bipartite graph with two

partite sets V1 and V2 of vertices such that |V1| = p, and |V2| = q is denoted by Kp,q.

The graph K1,n−1 is a star.
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u u
u u u

u u u
u u u

u
u u

�
�

�
��

@
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@
@@

�
�

�
��

H
HHH

HHH
HH

@
@
@
@
@

K3,3 K1,2K2,3

Figure 1.14: Complete bipartite graph K1,2, K2,3, K3,3

Definition 1.2.19. [28] A graph G is called an acyclic graph or forest if it has no

cycles. A connected acyclic graph is called a tree.

x
x
x

xx
x x

x x x x

�
�

�
�
�

@
@
@
@
@

�
�

��

@
@
@@

�
�

��

@
@
@
@

Figure 1.15: Tree

Definition 1.2.20. [27] A double star Sp,q is a tree with exactly two vertices that

are not pendant vertices, with one adjacent to p pendant vertices and the other to q

pendant vertices.
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x x
x

x x
x

x x
v3 u3

v1 u1

v0 u0

v2 u2

Figure 1.16: Double star S3,3

Definition 1.2.21. [28] Let G1 and G2 be two graphs with disjoint vertex sets V1 and

V2, and edge sets E1 and E2, respectively. Then

1. their union G1 ∪ G2 is the graph having vertex set V1 ∪ V2 and the edge set

E1 ∪ E2.

x x

x

x

x

x x












A
A
A
A
A
A

2K1 K2 K3

Figure 1.17: Union 2K1 ∪K2 ∪K3

2. their join G1 +G2 is the graph consisting of G1 ∪G2 with all edges joining V1

with V2.
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x
x

x

x

x

x x

x x

@
@
@
@
@
@
@
@�

�
�
�
�
�
�
�

x=
+

K1 C4 K1 + C4

Figure 1.18: Join K1 + C4 = W1,4

3. The (Cartesian)product G1 × G2 of graphs G1 and G2 has V (G1) × V (G2)

as its vertex set and (u1, u2) is adjacent to (v1, v2) if either u1 = v1 and u2 is

adjacent to v2 or u2 = v2 and u1 is adjacent to v1.

x

x

x

x x

x x x

xxx
K2 K3

× =

K2 ×K3

Figure 1.19: Cartesian product K2 ×K3

Definition 1.2.22. [22] The Corona G1 ◦G2 of two graphs G1 and G2 is the graph

G obtained by taking one copy of G1 (which has v1 vertices) and v1 copies of G2, and
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then joining the ith vertex of G1 to every vertex in the ith copy of G2.

@
@
@

�
�
�

@
@
@

�
�
�

xx
x x v

v vv

vvv vv
v vv

vv v v

Figure 1.20: Corona C4 ◦ P4

Definition 1.2.23. [28] The join K1 + Cn−1 of vertex disjoint graphs K1 and Cn−1

is said to be a wheel, and denoted by W1,n−1. z
z

z
z z

z

z

z

‘

Figure 1.21: Wheel W1,7
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Definition 1.2.24. [28] A vertex and an edge are said to cover each other if they are

incident. A set of vertices which covers all the edges of a graph G is called a vertex

cover for G. The vertex covering number α(G) of G is the minimum number of

vertices in a vertex cover.

Example 1.2.25. Let G be a graph is shown in Figure 1.22, such that V (G) =

{v1, v2, v3, v4, v5, v6}. The sets S1 = {v2, v5}, and S2 = {v1, v3, v4, v6}, are vertex

cover sets but the set S1 = {v2, v5} is vertex covering number and α(G) = 2.

z z
z

z
z z

v1
v2

v3

v4

v5

v6

Figure 1.22: Simple graph of G

Definition 1.2.26. [28] A set S of vertices (or edges) in G is independent if no two

vertices (or edges) in S are adjacent. The vertex independence number of a graph

G, denoted as β(G) is the maximum cardinality of an independent set of vertices.

Example 1.2.27. The sets S1 = {v3, v4}, S1 = {v2, v5} and S3 = {v1, v3, v4, v6} of

a graph G in Figure 1.22 are independent set of G. The set S3 = {v1, v3, v4, v6} is
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vertex independence number of a graph G such that β(G) = 4.

Definition 1.2.28. [28] The connectivity κ(G) of a graph G is the minimum number

of vertices whose removal results in a disconnected or trivial graph.

Example 1.2.29. The sets S1 = {v2}, S2 = {v3, v4}, S3 = {v2, v5} and S4 =

{v3, v4, v6} of a graph G in Figure 1.22 are connectivity set of G. The set S3 = {v2}

is the minimum number of a graph G such that κ(G) = 1.

Definition 1.2.30. [28] An assignment of colors to the vertices of a graph G so that

no two adjacent vertices have the same color is called a proper coloring or coloring

of a graph G. For each color in a coloring of a graph G, the set of all vertices which

receive that color is independent and is called a color class. A proper coloring of

G that has a minimum number of color classes is called a χ(G) − coloring and the

number of color classes in such a coloring is χ(G) the chromatic number of G.

Example 1.2.31. χ(G) = 2 of a graph G as shown in Figure 1.23.

z
z

z
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v5

v6

Figure 1.23: G
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Definition 1.2.32. [28] The line graph L(G) of G has the edges of G as its vertices

which are adjacent in L(G) if and only if the corresponding edges are adjacent in G.
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e1

e2

e1

e2

e3

e4

L(G) L(H)

Figure 1.24: G, L(G), H and L(H)

Definition 1.2.33. [33] A tree is called a binary tree if it has one vertex of degree

2 and each of the remaining vertices of degree 1 or 3.

x xx

x

x x x x x x
x x x x

x x

Figure 1.25: Binary tree
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Definition 1.2.34. [29] A set S ⊆ V (G) is called a dominating set of G if each

vertex of V −S is adjacent to at least one vertex of S. The domination number of

G denoted by γ(G), is the minimum cardinality of a dominating set in G.

Example 1.2.35. The sets S1 = {v7, v6} and S2 = {v7, v6, v5} of a graph G in Figure

1.26 are dominating sets of G. The set S1 = {v7, v6} is a domination number of G,

such that γ(G) = 2.

x x x
xx

x x
v1 v2

v3 v4

v5 v6

v7

Figure 1.26: G

Definition 1.2.36. [48] For a graph G the splitting graph S ′(G) of a graph G

is obtained by adding a new vertex v′ corresponding to each vertex v of G such

that N(v) = N(v′), where N(v) and N(v′) are the neighborhood sets of v and v′,

respectively.
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Figure 1.27: Splitting graph of P3

1.3 Background of the study

In this section, we display a historical background for the theory of hub parameters.

A hub set in a graph theory was introduced by Walsh [56] in 2006, and he started

by this imagination: we have a graph G which represents the buildings in a large

industrial complex, with an edge between two buildings if it is an easy walk from one

to the other. The corporation is considering to implement a rapid-transit system, and

wants to place its stations in buildings (which will then be used only for this purpose)

so that to travel between two non-adjacent buildings (which are not stations), one need

only walk to an adjacent station, take the RTS, and walk to the desired building. The

corporation would like to implement this plan as cheaply as possible, which involves

converting as few buildings as possible into transit stations. After this imagination

he introduced the concept of hub number.
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In 2011, Peter Johnson, Peter Slater and M. Walsh, have studied the connected

hub number and the connected domination number [30], they characterize the graphs

G for which γc(G) = hc(G) + 1. Also they developed and proved many results.

In 2014, Veena Mathad, Ali Mohammed Sahal and S. Kiran, introduced the

concept of the total hub number ht(G) of graphs [44], and they computed the total

hub number ht(G) of several classes of graphs. Also they determined bounds in terms

of other graph parameters.

In 2015, E. C. Cuaresma. and R. N. Paluga, have studied the hub number of some

graphs [19], they give the results for the hub numbers of the join and corona of two

connected graphs, cartesian product of two complete graphs, also cartesian product

of a non-complete connected graphs and a complete graphs and the cartesian product

of two paths Pn and Pk for n ≥ 4 and k = 2, 3.

A set S ⊆ V (G) is called a dominating set of G if each vertex of V −S is adjacent

to at least one vertex of S. The domination number of a graph G denoted as γ(G)

is the minimum cardinality of a dominating set in G [29]. A dominating set D is a

connected dominating set of G if the subgraph < D > induced by D, is connected.

The minimum cardinality of a connected dominating set of G is called the connected

domination number of G which we denote by γc(G).
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In 2015, Natarajan and S. K. Ayyaswamy [5] introduced a new distance related

domination parameter called the hop domination number of a graph. As defined in

[5], a subset S of V (G) is a hop dominating set of G if for every v ∈ V (G)− S, there

exists u ∈ S such that d(u, v) = 2. In [6], bounds on the hop domination number of

a tree were investigated.

In 2018, Shadi and Veena [31, 32] introduced the restrained hub number in graphs.

There are several measures of the reliability of a communication network. An elegant

and simple one is called the integrity of the network.

The concept of integrity was introduced by Barefoot, Entringer and Swart in 1987

[9]. The motivation is as follows. Model the network as a graph. To disrupt the

network a terrorist attempts to remove a small set of vertices or (edges) such that

the remaining connected components are small. Formally, the integrity of a graph G

with vertex set V is defined as I(G) = min
S⊂V
{|S|+m(G−S)}, where m(G−S) denotes

the order of the largest component of G− S.

In 2015, Sultan et al. [34] have introduced the concept of hub-integrity of a graph

G as a new measure of vulnerability which is defined as follows. The hub-integrity of

a graph G denoted by HI(G) is defined by, HI(G) = {min|S| + m(G − S)}; S is a

21



hub set of G, where m(G− S) is the order of a maximum component of G− S. For

more details on the hub-integrity see [35, 36, 37].

In [23], Goddard added many results and developed some generalizations. Many

results on the integrity of specific families of graphs, bounds for the integrity, maximal

and minimal graphs of given integrity, relationships between integrity and other

parameters, and computational complexity are studied in [25] . They discuss variations

and generalizations of the concept.

We have integrated the concept of integrity and the concept of a hub set of a

graph G, to get a new concept. Motivated by this, we introduce hop hub-integrity

of a graph HhI(G) as a new measure of the stability of a graph G in Chapter

3. We calculate the hop hub-integrity of some standard graphs, also we study

some properties of HhI(G). Furthermore, the relation between HhI(G) and some

parameters is determined, the characterization for HhI of a tree is obtained. In

addition, bounds on HhI(G) are established. Also, HhI of line graph is presented.

Finally, hop Hub-integrity polynomial of graphs is discussed.

1.4 Research Objectives

In this study, aim is to add the following contributions :
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• Introducing the concept of hop hub number in a graph.

• Establishing bounds or exact values of the hop hub numbers for some standard

graphs.

• defining and study some new hub parameters of graphs. For instance, we

introduce the concept of hop hub integrity of graphs.

• Introducing hop hub polynomial of a connected graph G.

• Introducing the concept of hop hubtic number in a graph and determining

bounds or exact values of the hop hubtic numbers for some standard graphs.

1.5 Methodology

We collect the existing research materials related to hub number of a graph.

We study the hub number of a graph. We explore a new concept related to hub

number of graphs namely hop hub number in graphs. We present the methods are

planned to use in our research, for proving the results or to explore new ideas or

concepts in our research area. To compute hop hub number for several classes of

graphs conditional probabilistic method is used. Also, to determine bounds and

relations of hop hub number and other graph parameters we employ the standard

methods of proofs namely direct method and contradiction method. To explore
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these new concepts of graphs we are employing the following methods : Example

or Counterexample method, Comparison method.

1.6 Short outline of the thesis

In this thesis, our main objective is to investigate the measures of vulnerability of

a graph, that is to know how many vertices can still communicate, after removal of

some vertices or edges of a graph, this means, one can determine the extent to which

the graph retains certain properties after the removal of a number of vertices or edges.

In Chapter 1, we introduce the basic definitions of a graph and short survey for

some concepts used in this thesis.

In Chapter 2, we introduce a new parameter of a hub theory in graph G, namely,

hop hub of a graph, we determine the hop hub number of some standard graphs. Also

upper and lower bounds for hh(G) are obtained. we discuss some of its properties

hop hub number of line graph.

In Chapter 3, we introduce a new measure of the stability of a graph G namely,

hop hub-integrity. The hop hub-integrity of some graphs is obtained. The relations

between hop hub-integrity and other parameters are determined and some properties
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of hop hub-integrity of line graphs.

In Chapter 4, some of properties of hop hub number of splitting graph are

obtained and some properties of hop hub-integrity of splitting graph are obtained.

In Chapter 5, we determine the hop hubtic number of some standard graphs.

Also we obtain bounds for hξ(G). In this chapter we introduce hop hub polynomial

of a connected graph G. The hop hub polynomial of a connected graph G of order n

is the polynomial Hh(G, x) =

|V (G)|∑
i=hh(G)

hh(G, i)x
i, where hh(G, i) denotes the number of

hop hub sets of G of cardinality i and hh(G) is the hop hub number of G. We obtain

hop hub polynomial of some special classes of graphs.
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CHAPTER 2

Hop hub number of graphs

Reference [49] is based on this chapter.
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2.1 Introduction

A hub set in a graph theory was introduced by Walsh [56] in 2006, and he started

by this imagination: we have a graph G which represents the buildings in a large

industrial complex, with an edge between two buildings if it is an easy walk from one

to the other. The corporation is considering to implement a rapid-transit system, and

wants to place its stations in buildings (which will then be used only for this purpose)

so that to travel between two non-adjacent buildings (which are not stations), one need

only walk to an adjacent station, take the RTS, and walk to the desired building. The

corporation would like to implement this plan as cheaply as possible, which involves

converting as few buildings as possible into transit stations. After this imagination

he introduced the concept of hub number.

Definition 2.1.1. [56] Suppose that H ⊆ V (G) and take v, u be any two vertices.

The H-path between v and u is a path where all intermediate vertices are from H.

(This includes the degenerate cases where the path consists of the single edge vu or a

single vertex v if v = u, call such an H−path trivial.)

Definition 2.1.2. [56] A hub set in a graph G is a set H of vertices in G such that

any two vertices outside H are connected by a path whose all internal vertices lie in

H. The hub number of G, denoted h(G), is the minimum size of a hub set in G.

Theorem 2.1.3. [56]
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(a) For any complete graph Kn, h(Kn) = 0.

(b) For any path Pn with n ≥ 3, h(Pn) = n− 2.

(c) For any cycle Cn, h(Cn) = n− 3.

(d) For the star K1,n−1, h(K1,n−1) = 1.

(e) For the double star Sp,q, h(Sp,q) = 2.

In 2011, Peter Johnson, Peter Slater and M. Walsh, have studied the connected

hub number and the connected domination number [30], they characterize the graphs

G for which γc(G) = hc(G) + 1. Also they developed and proved many results.

Definition 2.1.4. [30] A connected set in G is a vertex set F such that the subgraph

of G induced by F , G[F ] is connected. The connected hub number of G, denoted

hc(G), is the minimum size of a connected hub set in G.

In 2014, Veena Mathad, Ali Mohammed Sahal and S. Kiran, introduced the

concept of the total hub number of graphs ht(G) [44], and they computed the total

hub number ht(G) of several classes of graphs. Also they determined bounds in terms

of other graph parameters.

Definition 2.1.5. [44] Let G be a graph. A total hub set S of G is a subset of

V (G) such that every pair of vertices (whether adjacent or nonadjacent) of V −S are

connected by a path, whose all intermediate vertices are in S. The total hub number

ht(G) is then defined to be the minimum cardinality of a total hub set of G.
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Theorem 2.1.6. [44]

(a) For any complete graph Kn, n ≥ 2 ht(Kn) = 1.

(b) For any path Pn with n ≥ 3, ht(Pn) = n− 2.

(c) For any cycle Cn, n ≥ 6 ht(Cn) = n− 3.

(d) For the wheel W1,n−1, ht(W1,n−1) = 1.

(e) For the double star Sp,q, p, q ≥ 1 ht(Sp,q) = 2.

In 2015, Edilberto Cuaresma and Rolando Paluga, have studied the hub number

of some graphs [19], they give the results for the hub numbers of the join and corona

of two connected graphs, cartesian product of two complete graphs, also cartesian

product of a non-complete connected graphs and a complete graphs and the cartesian

product of two paths Pn and Pk for n ≥ 4 and k = 2, 3.

Theorem 2.1.7. [19] For any connected graphs G and H,

h(G+H) =


0, if G and H are complete,

1, if G complete and H non - complete,

min{h(G), h(H), 2}, if G and H are both non - complete.

In 2015, Natarajan and S. K. Ayyaswamy [5] introduced a new distance related

domination parameter called the hop domination number of a graph, and they computed

hop domination number of a graph γh(G) of several classes of graphs. In [6] also they

determined bounds on the hop domination number of a tree were investigated.
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Definition 2.1.8. [5] A set S ∈ V of a graph G is a hop dominating set(hd-set, in

short) of G if for every v ∈ V − S, there exists u ∈ S such that d(u, v) = 2. The

minimum cardinality of a hd-set of G is called the hop domination number and is

denoted by γh(G).

Theorem 2.1.9. [5]

(a) For any complete graph Kn, γh(Kn) = n.

(b) For any path Pn with n = 6r, γh(Pn) = 2r.

(c) For any cycle Cn, n = 6r, γh(Cn) = 2r.

(d) For the wheel W1,n−1, γh(W1,n−1) = 3.

(e) For a complete bipartite graph Kp,q, γh(Kp,q) = 2.

In 2021, Ali Mohammed Sahal, introduced the concept of the doubly connected

hub number of graphs hcc(G) [?]. And he computed the doubly connected hub number

for several classes of graphs, bounds in terms of other graph parameters are also

determined.

Definition 2.1.10. [?] Let G be a connected graph. A doubly connected hub set S of

G is a subset of V (G) such that any pair of vertices of V −S are connected by a path,

whose all intermediate vertices are in S and both 〈S〉 and 〈V (G)− S〉 are connected.

The cardinality of the minimum doubly connected hub set in G is the doubly connected

hub number and is denoted by hcc(G).
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Remark 2.1.1. [?] Notice that

(1) For any complete graph Kn, hcc(Kn) = hc(Kn) = 0;

(2) For any double star Sp,q, hcc(Sp,q) = p+ q + 1;

(3) For any cycle Cn, hcc(Cn) = hc(Cn) = n− 3;

(4) For any complete bipartite graph Kp,q,

hcc(Kp,q) =


0, if p = q = 1 ;

1, if q = 1 and p = 2 or q = 2 and p ≥ 2 ;

2, if p, q ≥ 3.

(5) For the wheel W1,n−1, n ≥ 4, hcc(W1,n−1) = 1.

Using the concept of hop domination number γh(G) of a graphG and the definition

of the hub number h(G) of a graph G, motivated by this, we introduce the concept

of hop hub number of a graph G as a new parameter of a graph.

The following results will be useful in the proof of our results.

Theorem 2.1.11. [56] h(Cn) = n− 3.

Theorem 2.1.12. [11] For any complete graph G, χ(G) = n.

Theorem 2.1.13. [56] Let T be a tree with n vertices and l levels. Then h(T ) = n−l.

Theorem 2.1.14. [56] Let S be a subset of V (G). Then G/S is complete if and only

if S is a hub set of G.
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Theorem 2.1.15. [56] For any graph G, h(G) + 1 ≥ γ(G).

2.2 The hop hub number of graphs

Definition 2.2.1. A hub set S is a hop hub set of G if for every v ∈ V − S, there

exists u ∈ S such that d(u, v) = 2. The minimum cardinality of a hop hub set of G is

called the hop hub number and is denoted by hh(G).

By the definition of hop hub number we obtain the obvious bound hh(G) ≥ h(G).

Proposition 2.2.2. The hop hub numbers of some specific classes of graphs are as

below:

1. For any path Pn,

hh(Pn) =


2, if n = 2,

2, if n = 3,

n− 2, if n ≥ 4.

2. For any complete graph Kn, hh(Kn) = n.

3. For the wheel graph W1,n−1,

hh(W1,n−1) =


4, if n = 4,

3, if n ≥ 5,

4. For the complete bipartite graph Kp,q, hh(Kp,q) = 2.
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5. For the double star Sp,q, hh(Sp,q) = 2.

6. For any cycle Cn,

hh(Cn) =


2, if n = 4,

3, if n = 3,

n− 3, if n ≥ 5.

Proof. 1. We have the following cases:

Case 1: When n = 2, suppose that {v1, v2} be the vertices of path P2 see Figure

2.1, then S = {v1} is not hop hub set because d(v1, v2) = 1 and S = {v2} is

not hop hub set because d(v1, v2) = 1, then S = {v1, v2} is hop hub set, so

hh(P2) = 2.

x x
v1 v2

Figure 2.1: Path P2

Case 2: When n = 3, consider {v1, v2, v3} be the vertices of path P3 see Figure

2.2, suppose that S = {vi}, 1 ≤ i ≤ 3 is a hop hub set of P3, because there

exist vj, 1 ≤ j ≤ 3, i 6= j such that d(vi, vj) 6= 2, so S = {vi} is not hop

hub set. Consider S = {v1, v2} is hop hub set of P3, since v3 ∈ V (P3) − S,

there exists v1 ∈ S such that d(v1, v3) = 2 or S = {v2, v3} is hop hub set, since
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v1 ∈ V (P3)−S, there exists v3 ∈ S such that d(v1, v3) = 2. Then S is a hop hub

set of P3 and it is clear that S is a minimum hop hub set, therefore hh(P3) = 2.

x x x
v1 v2 v3

xxx
v1 v2 v3

Figure 2.2: Path P3

Case 3: When n ≥ 4, suppose that {v1, v2, · · · , vn}, a vertex set of Pn, and

S = {v2, v3, · · · , vn−1}, a hop hub set of Pn such that |S| = n− 2.

To show that S is a minimum hop hub set of Pn, if vi, 2 ≤ i ≤ n− 1 is removed

form set S, then there does not exist S-path between v1 and vn. Thus S is

minimum hop hub set. Also since hh(Pn) ≥ h(Pn) and h(Pn) = n − 2 then

hh(Pn) = n− 2, this complete the proof.

2. Since all vertices in Kn are adjacent and the distance between them equal one,

so we must choose all vertices as hop hub set of Kn, and hence hh(Kn) = n.

3. The following cases are considered:

Case 1: When n = 4, then W1,3
∼= K4, since hh(K4) = 4 we get the resuit.

Case 2: When n ≥ 5. Let V (W1,n−1) = {v, v1, v2, · · · , vn−1} and consider

S = {v, v1, v2} a S-set of W1,n−1. We claim that S is a minimum hop hub set

of W1,n−1, for any x, y ∈ V − S there exists S-path between them. Now if v is
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removed form S, there is no S-path between any two vertices outside the set S.

Thus the set S is not hub set, and removal of v1 or v2 form S, leads to existence

some vertex vi ∈ V − S such that d(v1, vi) = 1 or d(v2, vi) = 1. Thus S is a

minimum hop hub set. Hence, hh(W1,n−1) = 3.

4. Let V (Kp,q) = {v1, v2, . . . , vp, u1, u2, . . . , uq}. Consider S = {v1, u1} is a hop

hub set of Kp,q such that |S| = 2. To show that S is a minimum hop hub set

of Kp,q, if we remove v1 of S, the set S = {u1} is not hop hub set because

there exist vi, 2 ≤ i ≤ p such that d(vi, u) 6= 2 and this does not achieve the

definition of hop hub set. If we remove u1 of S, the set S = {v1} is not hop hub

set because there exist ui, 2 ≤ i ≤ q such that d(ui, v) 6= 2 and this does not

achieve the definition of hop hub set. Therefore, hh(Kp,q) = 2.

5. Let V (Sp,q) = {v, v1, v2, . . . , vp, u, u1, u2, . . . , uq}. Consider S = {v, u} is hub

set of Sp,q by Theorem 2.1.3, h(Sp,q) = 2, we prove S-set is hop hub set of

Sp,q, any vi ∈ V (Sp,q) − S there exist u ∈ S such that d(vi, u) = 2 and any

ui ∈ V (Sp,q)− S there exists v ∈ S such that d(ui, v) = 2, then S is a hop hub

set of Sp,q, and hh(G) ≥ h(G), then S-set is minimum hop hub set of Sp,q, and

hh(Sp,q) = 2.

6. We have the following cases:

Case 1: For n = 3, since C3
∼= K3, we get the result by Proposition 2.2.2 part
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2, hh(C3) = 3.

Case 2: When n = 4, consider S = {v1, v2} is a hop hub set of C4 as shown in

Figure 2.3. It is clear that S is a minimum hop hub set, so hh(C4) = 2.

x x

x x

v1 v2

v3 v4

Figure 2.3: Cycle C4

Case 3: When n ≥ 5. Let V (Cn) = {v1, v2, . . . , vn}. Consider S = {v4, v5, . . . , vn}

is a hop hub set of Cn, such that |S| = n−3. To show that S is a minimum hop

hub set of Cn. By Theorem 2.1.11, h(Cn) = n − 3 and since hh(Cn) ≥ h(Cn),

also any vertex v ∈ V (Cn)− S there exist vi, 4 ≤ i ≤ n such that d(vi, v) = 2,

it follows that S is a minimum hop hub set of Cn, and hence hh(Cn) = n− 3.

Theorem 2.2.3. For any connected graph G, 2 ≤ hh(G) ≤ n.

Proof. Suppose that hh(G) < 2, then hh(G) = 1 and S = {v}, by the definition of

hop hub set there exists u ∈ V (G) − S, such that d(u, v) = 2, also there exists u1

36



adjacent of both u and v, but S = {v} only, then u1 ∈ S, a contraction the definition

of hop hub set and upper bound is achieved of G = Kn.

Theorem 2.2.4. Let G be a disconnected graph having M1,M2, ...,Ml components.

Then hh(G) = min
1≤t≤l
{Xt}, where Xt = hh(Mt) +

l∑
i=1,i 6=t

|V (Mi)|.

Proof. Any hop hub set S of a graph G, must contains all the vertices of t − 1

components, and the vertices of hop hub set of the remaining component. To show

that S is minimum. The union of all components except one and taking the hop hub

set of the remaining component, we can compute all hop hub sets of G, and more

detailed S =
t⋃

i=1,i 6=j
Mi ∪H t

h, where H t
h is a hop hub set of Mt.

Let Xt = hh(Mt) +
l∑

i=1,i 6=t

|V (Mi)|, then min
1≤t≤l
{Xt} = hh(G).

Theorem 2.2.5. For any graph G, γ(G) ≤ hh(G) + 1.

Proof. By Theorem 2.1.15 and since hh(G) ≥ h(G), we get the result hh(G) + 1 ≥

γ(G).

Remark 2.2.1. In general, the inequality hh(G′) ≤ hh(G) is not true for a subgraph

G′ of G, for the graph G and a subgraph G′ shown in Figure 2.4, we have hh(G) = 2,

while hh(G′) = 4.
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x x x x
x x

v1 v2 v3 v4 v1 v2 v3 v4

v5 v6 v5 v6
G G′

x x x x
x x

Figure 2.4: G and G′

Theorem 2.2.6. Let G be a connected graph of order n, hh(G) = n if and only if

G ∼= Kn.

Proof. Suppose that hh(G) = n, this means that all vertices of at graphG are adjacent

and hence G ∼= Kn.

Conversely, if G ∼= Kn, the proof follow form Proposition 2.2.2.

Lemma 2.2.7. Let S be a subset of V (G). Then G/S is complete if and only if S is

a hop hub set of G.

Proof. By definition of hop hub set and since any hop hub set is hub set of G. By

Theorem 2.1.14 it follows that G/S is complete graph.

Theorem 2.2.8. If G is complete graph, then χ(G) = hh(G).
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Proof. Assume that G is complete graph and by Proposition 2.2.2, and Theorem

2.1.12, we get the result.

Remark 2.2.2. The converse of Theorem 2.2.8 is not true, for example G = K1,3 as

shown in Figure 2.5.

x

x x x

v1

v2 v3 v4

e1 e2 e3

Figure 2.5: K1,3

Note that χ(G) = 2 and hh(G) = 2, but G is not complete.

Theorem 2.2.9. For any connected graph G, if hh(G) = 2 then diam(G) ≤ 3.

Proof. Let hh(G) = 2, we prove diam(G) ≤ 3, suppose diam(G) > 3. Then by

definition of diam(G), there exists a path between five vertices at least and hh(P5) = 3,

but this contradiction that hh(G) = 2, then diam(G) ≤ 3.

Remark 2.2.3. The converse of Theorem 2.2.9 is not true. For example K3 such that

diam(K3) = 1 and hh(K3) = 3.
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Theorem 2.2.10. Let T be a tree, hh(T ) = 2 if and only if diam(T ) ≤ 3.

Proof. Suppose that hh(T ) = 2, then diam(T ) ≤ 3 by Theorem 2.2.9.

Converse, suppose that diam(T ) ≤ 3 and we prove hh(T ) = 2. Since diam(T ) ≤ 3

and tree has not closed path, then the largest distance in T contains four vertices.

Let T be P4 since hh(P4) = 2 by Proposition 2.2.2, and without loss of generally, then

hh(T ) = 2.

Theorem 2.2.11. For any connected graph G, hh(G) ≥ h(G) and the inequality is

sharp if G ∼= T , and h(G) ≥ 3.

Proof. Form definition of hop hub set of G, hh(G) ≥ h(G) and if h(G) ≥ 3 and G ∼= T

then diam(G) ≥ 3 and for any vertex u ∈ V − S there exists vertex v ∈ S such that

d(u, v) = 2, then hh(G) = h(G).

Lemma 2.2.12. Let T be a tree with n vertices and l leaves and i internal vertices,

then hh(T ) = h(T ) = n− l such that i ≥ 3.

Proof. Since i ≥ 3, then h(T ) ≥ 3. By using Theorem 2.2.11 and by Theorem 2.1.13,

we get hh(T ) = n− l.

2.3 Hop hub number of line graphs

Definition 2.3.1. [28] The line graph L(G) of G has the edges of G as its vertices

which are adjacent in L(G) if and only if the corresponding edges are adjacent in G.
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Proposition 2.3.2. The hop hub number of some specific classes of graphs are as

below

1. For any path Pn, hh(L(Pn)) = n− 3.

2. For any cycle Cn,

hh(L(Cn)) =


2, if n = 4, 5,

3, if n = 3,

n− 3, if n ≥ 6.

3. For any double star Sp,q, hh(L(Sp,q)) = 3.

Proof. 1. Since L(Pn) ∼= Pn−1, and by Proposition 2.2.2, then hh(L(Pn)) = n− 3.

2. Since L(Cn) ∼= Cn, and by Proposition 2.2.2, then hh(L(Cn)) = hh(Cn).

3. The graph L(Sp,q) consists of two complete graphs of orders p, q respectively,

and the vertex e that is adjacent to all vertices in L(Sp,q). The number of

vertices of L(Sp,q) is p+q = n. The graphs Sp,q and L(Sp,q) are shown in Figure

2.6. Consider S = {e, ep, e′q} a hop hub set of L(Sp,q). Since e is adjacent to all

vertices in L(Sp,q), for any vertex ei ∈ L(Sp,q), 1 ≤ i ≤ p− 1, there exist e′q ∈ S

such that d(ei, e
′
q) = 2 and also for any vertex ej ∈ L(Sp,q), 1 ≤ j ≤ q − 1,

there exists ep ∈ S such that d(e′j, ep) = 2. If we remove it from the graph

L(Sp,q), there is no S-path between the vertices that are not adjacent. So S is

a minimum hop hub set. Therefore hh(L(Sp,q)) = 3.
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CHAPTER 3

Hop hub-integrity of graphs

Reference [42] is based on this chapter.
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3.1 Introduction

In communication networks, we require greater degrees of stability or less vulnerability.

The vulnerability measures resistance of the network to the disruption in operation

after the failure of certain stations or communication links.

The stability of a communication network is of prime importance to network designers.

As the network starts losing links or nodes, ultimately there is a loss in its efficiency.

Thus, communication networks must be assembled to be as stable as possible, not

only with respect to the initial interruption, but also with respect to the possible

reconstruction of the network. The communication network can be represented as

an undirected graph. Tree, hypercube and star graph are popular communication

networks. If we model a network through graph, then there are many graph theoretical

parameters to describe the stability of communication networks. Most notably, the

vertex-connectivity and edge-connectivity have been frequently used. The best known

measure of reliability of a graph is its vertex-connectivity κ(G) defined to be the

minimum number of vertices whose removal results in a disconnected or trivial graph.

The difficulty with these parameters is that they do not consider what remains after

the graph is disconnected. Consequently, a number of other parameters have recently

been introduced in order to attempt to survive with this difficulty. The connectivity

of the two different graphs may be same, but the orders of theirs largest components
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need not be same. Then they may differ in respect to stability. Now, how can we

measure this property? The idea behind the answer is the concept of integrity, which

is different from connectivity. The concept of integrity was introduced as a measure

of graph vulnerability.

In [9], Barefoot, Entringer, and Swart introduced the integrity as a useful measure

of the "vulnerability" of a graph G, and it is defined as follows.

Definition 3.1.1. [9] I(G) = min{|S| + m(G − S) : S ⊆ V (G)}, where m(G − S)

denotes the order of the largest component of G− S.

Theorem 3.1.2. [7] The integrity of some specific classes of graphs are as below:

(a) For any complete graph Kn, I(Kn) = n.

(b) For any path Pn, I(Pn) = d2
√
n+ 1e − 2.

(c) For any cycle Cn, I(Cn) = d2
√
ne − 1.

(d) For the star K1,n−1, I(K1,n−1) = 2.

(e) For a complete bipartite graph Kp,q, I(Kp,q) = 1 +min{p, q}.

(F) For the null graph, I(Kn) = 1.

The integrity can be described as a measurement of connectivity of a graph. |S|

measures the volume of action needed to deteriorate or break a graph, andm(G−S) is

a measure of how much of the graph is yet intact. If we think of the graph as modeling
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a network, the vulnerability measures the resistance of the network to disruption of

operation after the failure of certain stations or communication links. The authors in

[9] compared integrity, connectivity, toughness and binding number for several classes

of graphs. They concluded that integrity is the most suitable measure of vulnerability

because it is most capable to distinguish between graphs that intuitively should have

various measures of vulnerability.

In 1987, Barefoot et al. [10] investigated the integrity of trees and powers of cycles.

Chartrand et al. [15] introduced the mean integrity of a graph, denoted j(G), and

is defined as j(G) = minS⊆V (G){|S| + m(G − S)}, where, m(G − S) =
∑k
i=1 p

2
i∑k

i=1 pi
and

p1, p2, ..., pk are the orders of components of G− S.

In 1988, Goddard and Swart [23] have introduced the concept of the integrity of the

join, union, product and composition of two graphs and the integrity of a graph and

its complement.

The integrity of a small class of regular graphs is studied by Atici and Crawford [4].

The authors in [3, 55], introduced the integrity of a cubic graphs. For more details of

integrity see [2, 7, 20, 25, 43]

In [18] Moazzami et al. compared the integrity, connectivity, binding number,

toughness, and tenacity for several classes of graphs. To know more about integrity

and edge-integrity one can see [7, 8, 10, 24].

46



In 2015, Sultan et al. [34] have introduced the concept of hub-integrity of a graph

as a new measure of vulnerability which is defined as follows.

Definition 3.1.3. [34] The hub-integrity of a graph G denoted by HI(G) is defined

by, HI(G) = {min|S|+m(G−S)}, S is a hub set of G, where m(G−S) is the order

of a maximum component of G− S.

Proposition 3.1.4. [34] The hub-integrity of some specific classes of graphs are as

below:

1. For any complete graph Kn, HI(Kn) = n.

2. For any path Pn with n ≥ 3, HI(Pn) = n− 1.

3. For any cycle Cn,

HI(Cn) =


n− 1, if n = 4, 5 ;

n− 2, if n ≥ 6.

4. For the star K1,n−1, HI(K1,n−1) = 2.

5. For the double star Sp,q, HI(Sp,q) = 3.

6. For the complete bipartite graph Kp,q, HI(Kp,q) = min{p, q}+ 1.

7. For the wheel graph W1,n−1, HI(W1,n−1) = d2
√
n− 1e.

8. For the complete k-bipartite graph Kn1,n2,.......,nk ,

HI(Kn1,n2,.......,nk) =
k∑
i=1

ni + 1− max
1≤i≤k

ni.
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For more details on the hub-integrity see [35, 38].

In 2019, Sultan and Veena [40] have introduced the concept of Hub-integrity of

line graphs and includes results on the hub-integrity of line graphs of some graphs.

Remark 3.1.1. [40] The hub-integrity of graph G and hub-integrity of line graph are

not comparable. For this situation consider the graphs in the following cases:

- In the star K1,n−1, HI(L(K1,n−1)) > HI(K1,n−1).

- In the cycle Cn, HI(L(Cn)) = HI(Cn).

- In the path Pn, n ≥ 4, HI(L(Pn)) < HI(Pn).

This motivated us to introduce a new measure of stability of a graph G and it is

called hop hub-integrity.

The following results will be useful in the proof of our results

Theorem 3.1.5. [49] Let T be a tree with n vertices and l levels, Then h(T ) =

hh(G) = n− l .

Theorem 3.1.6. [34] For any graph G, γ(G) ≤ HI(G).

Theorem 3.1.7. [33] If T is a binary tree order n with l terminal vertices, then T

has l − 1 internal vertices.
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3.2 The hop hub-integrity of graphs

Definition 3.2.1. [49] A hub set S is a hop hub set of G if for every v ∈ V − S,

there exists u ∈ S such that d(u, v) = 2. The minimum cardinality of a hop hub set

of G is called a hop hub number and is denoted by hh(G).

Definition 3.2.2. The hop hub-integrity of a graph G is denoted as HhI(G) =

min{|S|+m(G−S)}, S is a hop hub set, where m(G−S) is the order of a maximum

component of G− S.

A HhI-set of G is any subset S of V (G) for which HhI(G) = min{|S| + m(G −

S)}. For any disconnected graph G having k components G1, G2, ..., Gk of orders

p1, p2, ..., pk−1, pk, respectively such that p1 ≤ p2 ≤ ... ≤ pk−1 ≤ pk. We have

HhI(G) = p1 + p2 + ...+ pk−1 +HhI(Gk). Also, by the definition of hop hub-integrity

we obtain the obvious bound HhI(G) ≥ HI(G) ≥ I(G).

Proposition 3.2.3. The hop hub-integrity of some specific classes of graphs are as

below:

1. For any complete graph Kn, HhI(Kn) = n.

2. For any path Pn with n ≥ 4, HhI(Pn) = n− 1.

3. For the wheel graph W1,n−1, HhI(W1,n−1) = d2
√
n− 1e.
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4. For the complete bipartite graph Kp,q, HhI(Kp,q) = 2 +min{p− 1, q − 1}.

5. For the double star Sp,q, HhI(Sp,q) = 3.

6. For any cycle Cn,

HhI(Cn) =


n, if n = 3, 4.

n− 1, if n ≥ 5.

Remark 3.2.1. In general, the inequality HhI(G′) ≤ HhI(G) is not true for a subgraph

G′ of G, for the graph G and a subgraph G′ shown in Figure 3.1, we have HhI(G) = 4,

while HhI(G′) = 5.

x x x x
x x

v1 v2 v3 v4 v1 v2 v3 v4

v5 v6 v5 v6
G G′

x x x x
x x

Figure 3.1: G and subgraph of G′

Proposition 3.2.4. For any counted graph G, 2 ≤ HhI(G) ≤ n.

The lower bound and the upper bound attains for a complete graph Kn, n ≥ 2.

Theorem 3.2.5. Let T be a tree with n vertices and l terminals vertices, such that

internal vertices i ≥ 2. Then HhI(G) = n− l + 1.
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Proof. Let HhI(T ) = |S|+m(S−T ). The set n− l of all internals vertices in T forms

a hop hub set by Theorem 3.1.5, since the unique path between any two terminals

never passes through another terminal. Note that any proper subset of n− l cannot

be a hop hub set. So |S| = n − l, since every internal vertex is a cut-vertex. If we

delete of all n− l vertices, we get one competent or more than two competent of order

1. So, HhI(T ) = |S|+m(T − S) = n− l + 1.

Theorem 3.2.6. For any tree T , HhI(T ) ≥ α(T ) + 1.

Proof. Let S ′ be a minimum covering set of T . Then

HhI(T ) = |S|+m(T − S)

≥ |S ′|+m(T − S ′)(Because S ≥ S ′)

.
= |S ′|+ 1

≥ α(T ) + 1.

Corollary 3.2.7. For any graph G, HhI(G) ≥ γ(G) + 1.

Proof. By using Theorem 3.1.6 and from HhI(G) ≥ HI(G) we get result.

Corollary 3.2.8. For any graph G, HhI(G) ≥ hh(G), and if G is complete then is

equality .
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Definition 3.2.9. [33] A tree is called a binary tree if it has one vertex of degree 2

and each of the remaining vertices of degree 1 or 3. Clearly, P3 is the smallest binary

tree .

Theorem 3.2.10. If a tree T is a binary tree of order n. Then HhI(G) = dn/2e.

Proof. Let HhI(T ) = |S| + m(T − S). Since the hop hub set in any binary tree is i

such that i is internal vertices, and by Theorem 3.1.7, we have |S| = i = l− 1, where

l is the set of its number of terminal vertices of T . If we remove l−1 internal vertices

from binary tree T we get a totally disconnected graph. So, m(T−S) = 1. Therefore,

HhI(T ) = l − 1 + 1 = l. Since the number of terminal vertices in any binary tree

equal dn/2e, it follows that l = dn/2e. Therefore HhI(T ) = l = dn/2e.

Theorem 3.2.11. Let G ∼= Kn − e, e ∈ E(G). Then HhI(G) = n.

Proof. If G ∼= Kn − e, then G ∼= K2 ∪ (n − 2)K1. By definition a hop hub-integrity

of disconnected graph, we have

HhI(G) = n− 2 +HhI(K2)

= n− 2 + 2

= n.
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3.3 Some properties of hop hub-integrity of line graphs

Definition 3.3.1. [28] The line graph L(G) of G has the edges of G as its vertices

which are adjacent in L(G) if and only if the corresponding edges are adjacent in G.

Proposition 3.3.2.

- In the star K1,n−1, HhI(L(K1,n−1) = n− 1.

- In the cycle Cn, HhI(L(Cn)) = HhI(Cn).

- In the path Pn, n ≥ 4, HhI(L(Pn) = HhI(Pn−1).

- In the double star Sp,q, p, q ≥ 2, HhI(L(Sp,q) = min{p− 1, q − 1}+ 3.

Remark 3.3.1. The hop hub-integrity of a graph G and hop hub-integrity of line graph

are not comparable. For this situation consider the graphs in the following cases:

- In the star K1,n−1, HhI(L(K1,n−1)) > HhI(K1,n−1).

- In the cycle Cn, HhI(L(Cn)) = HhI(Cn).

- In the path Pn, n ≥ 4, HhI(L(Pn)) < HhI(Pn).

Proposition 3.3.3. For any path Pn, n ≥ 5, HhI(L(Pn)) +HhI(L(Pn)) = 2n− 4.

Theorem 3.3.4. Let G ∼= Kn − e, e ∈ E(G). Then HhI(L(G)) = 1.

Proof. Since G ∼= Kn − e, then G ∼= K2 ∪ (n − 2)K1, and L(G) ∼= K1. Thus

HhI(L(G)) = 1.

Proposition 3.3.5. If G is regular graph of degree 2, then HhI(G) = HhI(L(G)).
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Proof. G is regular of degree 2, hence G ∼= Cn, and HhI(Cn) = HhI(L(Cn)), so the

result.

Corollary 3.3.6. Let G be a connected graph and let α(G) = 1. Then

HhI(L(G)) = n− 1

.

Proof. Suppose α(G) = 1, then G ∼= K1,n−1. Then L(G) = Kn−1, so proof follows

from Proposition 3.3.2.

Proposition 3.3.7. If HhI(L(G)) = |E(G)|, then G ∼= K1,n−1 or G ∼= C3.

Theorem 3.3.8. For any subset D of vertices in a graph L(G), HhI(L(G) −D) ≥

HhI(L(G))− |D|.

Proof. Let S be aHhI- set of L(G), letD ≤ V (L(G)) and S∗ be aHhI-set of L(G)−D

such that S∗∗ = S∗∪D. Then |S∗∗| = |S∗|+ |D| and L(G)−S∗∗ = L(G)− (S∗∪D) =

(L(G)−D)− S∗. Therefore

HhI(L(G)) = |S|+m(L(G)− S)

≤ |S∗∗|+m(L(G)− S∗∗)

= |S∗|+ |D|+m[(L(G)−D)− S∗]

= HI(L(G)−D) + |D|.
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Corollary 3.3.9. HhI(L(K1,n−1)) +HhI(L(K1,n−1)) = 2n− 2.

Proof. Since L(K1,n−1) ∼= Kn−1, it follows from Proposition 3.3.2 such thatHhI(Kn−1) =

n− 1, and L(K1,n−1) ∼= Kn−1, so HhI(Kn−1) = n− 1, hence the result.

Remark 3.3.2. If G is a connected graph, and |E(L(G))| < |E(G)|, then HhI(L(G)) <

HhI(G). We note that |E(L(G))| < |E(G)| obtained only in a path graph, hence the

result. But the converse is not true, for example, the graphs shown in Figure 3.2.

v v
vv

vv v v
�
�

v v v v v
v v

G L(G)

Figure 3.2: Graph G and L(G)

Note that HhI(G) = 5 and HhI(L(G)) = 4, while |E(L(G))| > |E(G)|.
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CHAPTER 4

New results on hop hub number and

hop hub-integrity of splitting graph
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4.1 Introduction

Splitting graph S ′(G) was introduced by Sampath Kumar and Walikar [48]. For each

vertex v of a graph G, take a new vertex v′ and join v′ to all vertices of G adjacent

to v. The graph S ′(G) thus obtained is called the splitting graph of G.

Vaidya and Kothari [52] have discussed domination integrity of a graph obtained

by duplication of an edge by vertex and duplication of vertex by an edge in path and

cycle. Also Vaidya and Kothari [53] have discussed domination integrity of splitting

graph of path and cycle.

In 2016, Sultan and Veena [38] have discussed hub-integrity of splitting graph and

duplication of an edge by vertex and duplication of vertex by an edge of some graphs.

Theorem 4.1.1. [38] For n ≥ 2,

HI(S ′(Pn)) =


2, if n = 2, 3,

n− 2, if n ≥ 4.

The following results will be useful in the proof of our results

Theorem 4.1.2. [38] For n ≥ 2, h(S ′(Pn)) = n− 2, if n ≥ 4.

Theorem 4.1.3. [38] For all n ≥ 3,

h(S ′(Cn)) =


2, if n = 3,

n− 2, if n ≥ 4.
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Theorem 4.1.4. [38] For all n ≥ 4, h(S ′(K1,n−1)) = 2.

Theorem 4.1.5. [38] For all p, q ≥ 2, h(S ′(Sp,q)) = 2.

4.2 The hop hub number of splitting graph

Definition 4.2.1. [53] For a graph G the splitting graph S ′(G) of graph G is obtained

by adding a new vertex v′ corresponding to each vertex v of G such that N(v) = N(v′)

where N(v) and N(v′) are the neighborhood sets of v and v′, respectively.

Theorem 4.2.2. For n ≥ 2,

hh(S
′(Pn)) =


2, if n = 2, 3,

n− 2, if n ≥ 4.

Proof. Let {u1, u2, ..., un} be the vertices of path Pn and {v1, v2, ..., vn} be the new

vertices corresponding to {u1, u2, ..., un} which are added to obtain S ′(Pn). AsN(v1) =

{u2}, N(vn) = {un−1}, N(u2) = {u1, u3, v1, v3} and N(un−1) = {un−2, un, vn, vn−2},

we have the three cases:

Case 1: For n = 2, S ′(P2) ∼= P4, as shown in Figure 4.1, and by Proposition 2.2.1.

Hence hh(S ′(P2)) = 2.
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x x x x

x x

u1 u2 u1 u2

v1 v2

P2

Figure 4.1: P2 and S ′(P2)

Case 2: For n = 3, consider S = {u1, u2} is a hop hub set for S ′(P3) that is shown

in Figure 4.2, it is clear the set S is a minimum hop hub set. Hence h(S ′(P3)) = 2.
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u1 u2 u3 u1 u2 u3

v1 v2 v3

S ′(P3)P3

Figure 4.2: P3 and S ′(P3)

Case 3: For n ≥ 4, consider S = {u2, u3, ..., un−1} is a hop hub set for S ′(Pn), as

shown in Figure 4.3, and |S| = n − 2. As v1 is adjacent to u2 and vn is adjacent to

un−1 and any vertex x ∈ V (S ′(Pn)) − S then there exist S-path between them, and

any vertex vi ∈ V (S ′(Pn))−S, 1 ≤ i ≤ n there exists uj ∈ S, 2 ≤ j ≤ n−1 such that
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d(vi, uj) = 2. Then S is a hop hub set. Now we claim that set S = {u2, ..., un−1} is

a minimum hop hub set. By Theorem 4.1.2 and hh(G) ≥ h(G). Thus S is minimum

hop hub set. Hence S ′(Pn) = n− 2.

x x x x x

x x x x x

u1 u2 u3 un−1 un

v1 v2 v3 vn−1 vn

........................

....................

Figure 4.3: Splitting graph of path Pn

Theorem 4.2.3. For all n ≥ 3,

hh(S
′(Cn)) =


3, if n = 3,

n− 2, if n ≥ 4.

Proof. Let {u1, u2, ..., un} be the vertices of cycle Cn and {v1, v2, ..., vn} be the new

vertices corresponding to {u1, u2, ..., un} which are added to obtain S ′(Cn). We have

the two following cases:

Case 1: n = 3. Consider S = {u1, u2, u3} a hop hub set of S ′(C3), as shown in

Figure 4.4, and any vertices vi ∈ (S ′(C3))−S, 1 ≤ i ≤ 3 there exist uj ∈ S, such that
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1 ≤ j ≤ 3, d(vi, uj) = 2, then S is hop hub set. We claim that set S = {u1, u2, u3}

is a minimum hop hub set. If we remove any vertex uj ∈ S, such that 1 ≤ j ≤ 3

there exist vi ∈ (S ′(C3)) − S such that d(vi, uj) 6= 2. Thus S is minimum hop hub

set. Hence hh(S ′(C3)) = 3.

x x
x

x x x
x x x

u1 u2

u3

v1 v2 v3

u1 u2 u3

C3 S ′(C3)

Figure 4.4: C3 and S ′(C3)

Case 2: n ≥ 4. Consider S = {u1, u2, ..., un−2}, a hop hub set of S ′(Cn), as

shown in Figure 4.5, and |S| = n − 2. As N(u1) = {u2, v2, un, vn} and N(un−2) =

{un−3, vn−3, un−1, vn−1}, then any vertex in S ′(Cn) there exist path between them,

and any vertex vi ∈ V (S ′(Cn)) − S such that 1 ≤ i ≤ n exists uj ∈ S such that

d(vi, uj) = 2 and any vertex ui ∈ V (S ′(Cn)) − S such that n − 1 ≤ i ≤ n there

exist uj ∈ S such that d(ui, uj) = 2, then S is a hop hub set of S ′(Cn). Now we

claim that set S = {u1, u2, ..., un−2} is a minimum hop hub set. By Theorem 4.1.3

h(S ′(Cn)) = n − 2 and hh(G) ≥ h(G). Thus S is the minimum hop hub set. Hence

hh(S
′(Cn)) = n− 2.
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Figure 4.5: Splitting graph of cycle Cn

Theorem 4.2.4. For all n ≥ 2, hh(S ′(K1,n−1)) = 2.

Proof. Let {u, u1, ..., un−1} be the vertices of K1,n−1 and {v, v1, ..., vn−1} be the new

vertices corresponding to {u, u1, ..., un−1} show in Figure 4.6, which are added to

obtain S ′(K1,n−1). Consider S = {u, u1} a hop hub set of S ′(K1,n−1). Since N(u) =

{u1, u2, ..., un−1, v1, v2, ..., vn−1}, and N(u1) = {v, u}, then there exist S-path between

them and any vi, 1 ≤ i ≤ n − 1 there exists u1 ∈ S such that d(vi, u1) = 2 and any

ui, 2 ≤ i ≤ n−1 exists u1 ∈ S such that d(ui, u1) = 2 and the vertex v also there exists

u ∈ S such that d(v, u) = 2, then S is hop hub set of S ′(K1,n−1). We claim that S is

a minimum hop hub set of S ′(K1,n−1). By Theorem 4.1.4, and since hh(G) ≥ h(G)

then S is a minimum hop hub set of S ′(K1,n−1). Hence hh(S ′(K1,n−1)) = 2.
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Theorem 4.2.5. For all p, q ≥ 2, hh(S ′(Sp,q)) = 2.

Proof. Let {u, u1, u2, ..., up−1, v, v1, v2, ..., vq−1} be the vertex set of double star Sp,q

and {u′, u′1, u′2, ..., u′p−1, v′, v′1, v′2, ..., v′q−1} be the new vertices corresponding to {u, u1,

u2, ..., up−1, v, v1, v2, ..., vq−1} which are added to obtain S ′(Sp,q) show in Figure 4.7.

Consider S = {u, v} is a hop hub set of S ′(Sp,q) and |S| = 2. Since N(u) =

{v, v′, u1, u2, ..., up−1, u′1, u′2, ..., u′p−1} and N(v) = {u, u′, v1, v2, ..., vq−1, v′1, v′2, ..., vq−1},

Then there exist S-path between them, and any vertex x ∈ {v′, u1, u2, ..., up−1, u′1, u′2, ...,

u′p−1} ⊂ V (S ′(Sp,q)) − S, there exists v ∈ S such that d(v, x) = 2, and any vertex

y ∈ {u′, v1, v2, ..., vq−1, v′1, v′2, ..., vq−1} ⊂ V (S ′(Sp,q))− S there exists u ∈ S such that

d(u, y) = 2, then S is a hop hub set. We claim that S is a minimum hop hub set

of S ′(Sp,q). Let us claim that S is a minimum hop hub set of S ′(Sp,q). By Theorem

4.1.5, Since hh(G) ≥ h(G) then S is a minimum hop hub set of S ′(Sp,q). Hence
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hh(S
′(Sp,q)) = 2.
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Figure 4.7: Sp,q and splitting graph of double star S ′(Sp,q)

4.3 The hop hub-integrity of splitting graph

Theorem 4.3.1. For n ≥ 2,

HhI(S ′(Pn)) =


3, if n = 2,

4, if n = 3,

n, if n ≥ 4.

Proof. Let {u1, u2, ..., un} be the vertices of path Pn and {v1, v2, ..., vn} be the new

vertices corresponding to {u1, u2, ..., un} which are added to obtain S ′(Pn). We have
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the following cases:

Case 1: For n = 2. From Theorem 4.2.2, we have hh(S ′(P2)) = 2 and H = {u1, u2}

is a hop hub set of S ′(P2). Then m(S ′(P2)−H) = 1. This implies that HhI(S ′(P2)) =

hh(S
′(P2))+m(S ′(P2)−H) = 2+1 = 3. Clearly there does not exist any hop hub set

S1 of S ′(P2) such that |S1|+m(S ′(P2)− S1) ≤ hh(S
′(P2)) +m(S ′(P2)−H). Hence,

HhI(S ′(P2)) = 3.

Case 2: For n = 3. From Theorem 4.2.2, we have hh(S ′(P3)) = 2 and H = {u1, u2}

is a hop hub-set of S ′(P3). Then m(S ′(P3)−H) = 2. This implies that HhI(S ′(P3)) =

hh(S
′(P3)) +m(S ′(P3)−H) = 2 + 2 = 4. Moreover, for any hop hub set S of S ′(P3)

we have, |S|+m(S ′(P3)− S) ≥ |H|+m(S ′(P3)−H). Hence HhI(S ′(P3)) = 4.

Case 3: For n ≥ 4. From Theorem 4.2.2, we have hh(S
′(Pn)) = n − 2. Let

H = {u2, u3, ..., un−1} be a hop hub-set of graph S ′(Pn). Then m(S ′(Pn) − H) = 2.

Therefore,

HhI(S ′(Pn)) ≤ hh(S
′(Pn)) +m(S ′(Pn)−H) = n− 2 + 2 = n. (4.3.1)

For showing that the number |H| + m(S ′(Pn) −H) is minimum. The minimality of

both |H| and m(S ′(Pn) − H) is taken into consideration. The minimality of |H| is

guaranteed as H is hop hub-set. It remains to show that if S is any hop hub set other

then H, |S| + m(S ′(Pn) − S) ≥ n. If m(S ′(Pn) − S) = 1, then |S| ≥ n > n − 1,

consequently |S| + m(S ′(Pn) − S) ≥ n + 1. If m(S ′(Pn) − S) ≥ 2, then trivially
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|S|+m(S ′(Pn)− S) ≥ n. Hence for any hop hub set S,

|S|+m(S ′(Pn)− S) ≥ n. (4.3.2)

From (4.3.1) and (4.3.2), HhI(S ′(Pn)) = n.

Theorem 4.3.2. For all n ≥ 3,

HhI(S ′(Cn)) =


4, if n = 3,

n+ 1, if n ≥ 4.

Proof. Let {u1, u2, ..., un} be the vertices of cycle Cn and {v1, v2, ..., vn} be the new

vertices corresponding to{u1, u2, ..., un} which are added to obtain S ′(Cn). We have

the three following cases:

Case 1: For n = 3. From Theorem 4.2.3, we have hh(S ′(C3)) = 3, and H =

{u1, u2, u3} is a hop hub-set of S ′(C3). Then m(S ′(C3)−H) = 1.

This implies that HhI(S ′(C3)) = hh(S
′(C3)) + m(S ′(C3) −H) = 3 + 1 = 4. Clearly

there does not exist any hop hub set S1 of S ′(C3) such that |S1|+m(S ′(C3)− S1) ≤

hh(S
′(C3)) +m(S ′(C3)−H). Hence, HhI(S ′(C3)) = 4.

Case 2: n ≥ 4. From Theorem 4.2.3, we have hh(S ′(Cn)) = n − 2 and H =

{u1, u2, ..., un−2} is a hop hub-set of S ′(Cn). Then m(S ′(Cn)−H) = 6. Therefore

HhI(S ′(Cn)) ≤ hh(S
′(Cn)) +m(S ′(Cn)−H) = n− 2 + 6 = n+ 4. (4.3.3)
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If S1 is any hop hub set of S ′(Cn) other than H with m(S ′(Cn)− S1) = 4 or 5, then

|S1| ≥ hh(S
′(Cn)) = n− 2. This implies that

|S1|+m(S ′(Cn)− S1) ≥ hh(S
′(Cn)) + 4 = n− 2 + 4 = n+ 2. (4.3.4)

If S2 is any hop hub set of S ′(Cn) other than H with m(S ′(Cn)− S2) = 2 or 3, then

|S2| ≥ n− 1. This implies that

|S2|+m(S ′(Cn)− S2) ≥ n− 1 + 3 = n+ 2. (4.3.5)

Let S3 = {u1, u2, ..., un}, a hop hub set of S ′(Cn), then m(S ′(Cn) − S3) = 1. This

implies that

|S3|+m(S ′(Cn)− S3) = n+ 1. (4.3.6)

Hence from (4.3.3), (4.3.4), (4.3.5) and (4.3.6), HhI(S ′(Cn)) = n+ 1.

Theorem 4.3.3. For all n ≥ 4, HhI(S ′(K1,n−1)) = 4.

Proof. Let {u, u1, ..., un−1} be the vertices of star K1,n−1 and {v, v1, ..., vn−1} be the

new vertices corresponding to {u, u1, ..., un−1} which are added to obtain S ′(K1,n−1).

From Theorem 4.2.4, we have hh(S ′(K1,n−1)) = 2 and m(S ′(K1,n−1)−H) = n, then

HhI(S ′(K1,n−1)) ≤ hh(S
′(K1,n−1)) +m(S ′(K1,n−1)−H) = n+ 2. (4.3.7)

If H = {u, v, u1} is a hop hub-set of S ′(K1,n−1). Then m(S ′(K1,n−1) − H) = 1.

Therefore,

HhI(S ′(K1,n−1)) = |H|+m(S ′(K1,n−1)−H) = 3 + 1 = 4. (4.3.8)
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To show that the number |H| + m(S ′(K1,n−1) − H) is minimum, it is assumed that

S is any hop hub set other than H and m(S ′(K1,n−1) − S) > 1, and |S| ≥ 3, then

|S|+m(S ′(K1,n−1)− S) > 1 + 3 = 4. Hence for any hop hub set S,

|S|+m(S ′(K1,n−1)− S) > hh(S
′(K1,n−1)) + 1. (4.3.9)

From (4.3.8) and (4.3.9), we have HhI(S ′(K1,n−1)) = 4.

Theorem 4.3.4. For all p, q ≥ 2, HhI(S ′(Sp,q)) = 5.

Proof. Let {u, u1, u2, ..., up−1, v, v1, v2, ..., vq−1} be the vertex set of double star Sp,q

and {u′, u′1, u′2, ..., u′p−1, v′, v′1, v′2, ..., v′q−1} be the new vertices corresponding to {u, u1, u2,

..., up−1, v, v1, v2, ..., vq−1} which are added to obtain S ′(Sp,q). Consider S = {u, v}, a

hop hub set of S ′(Sp,q).

Case 1: For p = q = 2. From Theorem 4.2.5, we have hh(S ′(S2,2)) = 2 and S = {u, v}

is a hop hub-set of S ′(S2,2). Then m(S ′(S2,2)− S) = 3. Therefore

HhI(S ′(S2,2)) ≤ hh(S
′(S2,2)) +m(S ′(S2,2)− S) = 5. (4.3.10)

Consider S1 is any hop hub set of S ′(S2,2) other than S with m(S ′(S2,2) − S1) = 2,

then |S1| ≥ 4. This implies that

|S1|+m(S ′(S2,2)− S1) ≥ 2 + 4 = 6. (4.3.11)
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Let S2 = {u, v, u′, v′} be a hop hub set of S ′(S2,2), then m(S ′(S2,2) − S2) = 1. This

implies that

|S2|+m(S ′(S2,2)− S2) = 4 + 1 = 5. (4.3.12)

Hence from (4.3.10), (4.3.11) and (4.3.12), HhI(S ′(S2,2)) = 5.

Case 2: For p ≥ 2, q > 2 or p > 2, q ≥ 2.

From Theorem 4.2.5, hh(S ′(Sp,q)) = 2, and S = {u, v} is a hop hub set of S ′(Sp,q).

Then m(S ′(Sp,q)− S) = max{p+ 1, q + 1}. Therefore

HhI(S ′(Sp,q)) ≤ hh(S
′(Sp,q)) +m(S ′(Sp,q)− S) = 2 +max{p+ 1, q + 1}. (4.3.13)

Consider S1 = {u, v, u′, v′} a hop hub set of S ′(Sp,q), then m(S ′(Sp,q)−S1) = 1. This

implies that

|S1|+m(S ′(Sp,q)− S1) = 4 + 1 = 5. (4.3.14)

We claim that S1 is a minimum hop hub set. Since u is adjacent to {v, v′, u1, ..., up, u′1,

..., u′p}, and removal of u from S1 leads to nonexistence of S1-path between ui and

u′i, it follows that S1 is a minimum hop hub set. Hence from (4.3.13) and (4.3.14),

HhI(S ′(Sp,q)) = 5.

Theorem 4.3.5. For any wheel W1,n−1, HhI(S ′(W1,n−1)) = n+ 1.

Proof. Since S ′(W1,n−1) contains a wheel graph W1,n−1 as its subgraph. If we choose

the set S as all vertices of W1,n−1 of S ′(W1,n−1), then there exist n components each

contains only one vertex. So HhI(S ′(W1,n−1)) = n+ 1.
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CHAPTER 5

Hop hubtic number and hop hub

polynomial of graphs

Reference [50] is based on this chapter.
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5.1 Introduction

A set D of vertices in a graph G is called dominating set of G if every vertex in

V −D is adjacent to some vertex in D, the minimum cardinality of a dominating set

in G is called the domination number γ(G) of a graph G [29].

In 1977, E. J. Cockayne and S. T. Hedetniemi introduced the concept of domatic

number of graph G and defined by, a D-partition of G is a partition of V (G) into

dominating sets, the domatic number of G denoted by d(G) is the maximum order of

a D-partition of G [17].

Introduced by Shadi, Veena, and Sultan [31] the maximum order of partition of

the vertex set V (G) in to hub sets is called hubtic number of G, and denoted by ξ(G).

A H-partition of a graph G is a partition of V (G) into hub sets.

Observation 5.1.1. [31]

(1) For any complete graph Kn, ξ(Kn) = n.

(2) For any cycle Cn,

ξ(Cn) =



3, if n = 3,

4, if n = 4,

2, if n = 5, 6,

1, if n ≥ 7.
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(3) For any path Pn,

ξ(Pn) =



2, if n = 2,

3, if n = 3,

2, if n = 4,

1, if n ≥ 5.

(4) For the wheel graph W1,n−1, n ≥ 4,

ξ(W1,n−1) =



4, if n = 4,

5, if n = 5,

3, if n = 6, 7,

2, if n ≥ 8.

(5) For the star K1,n−1, n ≥ 4 ξ(K1,n−1) = 2.

(6) For the double star Sp,q, ξ(Sp,q) = 2.

(7) For the complete bipartite graph Kp,q, p, q ≥ 3, ξ(Kp,q) = min{p, q}

Using the concept of hop hub set of a graph G and the definition of the hubtic

number of a graph G, motivated by this, we introduce the concept of hop hubtic

number of a graph G as a new parameter of a graph.

The following results will be useful in the proof of our results

Proposition 5.1.2. [17] For any graph G, daim(G) ≤ δ(G) + 1.
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Lemma 5.1.3. [49] Let T be a tree with n vertices and l leaves and i internal vertices,

then hh(T ) = h(T ) = n− l such that i ≥ 3.

Proposition 5.1.4. [49] The hop hub numbers of some specific classes of graphs are

as below:

1. For any path Pn,

hh(Pn) =


2, if n = 2,

3, if n = 3,

n− 2, if n ≥ 4.

2. For any complete graph Kn, hh(Kn) = n.

3. For the wheel graph W1,n−1,

hh(W1,n−1) =


4, if n = 4,

3, if n ≥ 5,

4. For the complete bipartite graph Kp,q, hh(Kp,q) = 2.

5. For the double star Sp,q, hh(Sp,q) = 2.

6. For any cycle Cn,

hh(Cn) =


2, if n = 4,

3, if n = 3,

n− 3, if n ≥ 5.
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5.2 The hop hubtic number of graphs

Definition 5.2.1. The maximum order of partition of the vertex set V (G) in to hop

hub sets is called hop hubtic number of G, and denoted by hξ(G). A Hh-partition of

a graph G is a partition of V (G) in to hop hub sets.

Example 5.2.2. The Figure 5.1, shows a hop hubtic partition of a graph. The sets

S1 = {v2, v3}, and S2 = {v1, v4, v5, v6}, are hop hub sets of G, so hξ(G) = 2.

x x x x

x x

v1 v2 v3 v4

v5 v6

Figure 5.1: Graph (G)

Theorem 5.2.3. For any connected graph G, 1 ≤ hξ(G) ≤ b n
hh(G)

c.

Proof. Let H = {H1, H2, H3, ..., Hhξ(G)} be the hop hubtic partition of graph G.

Clearly, |Hi| ≥ hh(G) for all i = 1, 2, ..., hξ(G), so hξ(G)|Hi| ≥ hξ(G)hh(G) for all

i = 1, 2, ..., hξ(G), then

n = Σ|Hi| ≥ hξ(G)hh(G).

Hence the assertion follows.

By Theorem 5.2.3, we get the next result.
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Proposition 5.2.4. 1. For any complete graph Kn, hξ(Kn) = 1.

2. For any path Pn with n ≥ 5, hξ(Pn) = 1.

3. For the wheel graph W1,n−1, hξ(W1,n−1) = 1.

4. For the complete bipartite graph Kp,q, hξ(Kp,q) = min{p, q}.

5. For the double star Sp,q, hξ(Sp,q) = 2.

6. For any cycle Cn,

hξ(Cn) =


2, if n = 4, 5, 6.

1, if n ≥ 7.

Proof. 1- By Theorem 5.2.3, and Proposition 5.1.4 we have

hξ(Kn) ≤ b n

hh(Kn)
c

= bn
n
c

= b1c

= 1

hξ(Kn) ≤ 1.

And for any graph G, hξ(Kn) ≥ 1, then hξ(Kn) = 1.

2- By Theorem 5.2.3, and Proposition 5.1.4,
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hξ(Pn) ≤ b n

hh(Pn)
c

= b n

n− 2
c

= bn− 2 + 2

n− 2
c

= bn− 2

n− 2
+

2

n− 2
c

= b1 +
2

n− 2
c

= 1 + b 2

n− 2
c, n ≥ 5

= 1 + 0, b 2

n− 2
c = 0, n ≥ 5.

= 1

hξ(Pn) ≤ 1.

And for any graph G, hξ(Pn) ≥ 1, then hξ(Pn) = 1 if n ≥ 5.

3- If n = 4, W1,3
∼= K4 and hξ(K4) = 1 form Proposition 5.2.4, part 1.

If n ≥ 5, let V (W1,n−1) = {v, v1, v2, · · · , vn−1} and hh(W1,n−1) = 3, since v is center

of W1,n−1 adjacent any vertex in W1,n−1, then hξ(W1,n−1) = 1.

4- Let V (Kp,q) = {v1, v2, . . . , vp, u1, u2, . . . , uq}. Consider Hh = {v1, u1} is a hop hub

set of Kp,q such that |Hh| = 2, therefore any hop hub set Hh must contain {vi, uj}

such that i ∈ p, j ∈ q, therefore, the number of hop hub set depended on the minimum

vertex i or j.

5- Let V (Sp,q) = {v, v1, v2, . . . , vp, u, u1, u2, . . . , uq}. There are two Hh-partition of
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V (Sp,q) are S1 = {v, u} and S2 = {v1, v2, . . . , vn, u1, u2, . . . , um}, then hξ(Sp,q) = 2.

6- Consider V (Cn) = {v1, v2, ..., vn} be the vertex of cycle, the following cases are

discussed :

Case 1: When n = 4, there only two Hh sets of cardinality two, namely, S1 = {v1, v2}

and S2 = {v3, v4}. Therefore, hξ(C4) = 2.

Case 2: When n = 5, there only one Hh set of cardinality two, namely, S1 = {v1, v2}

and one set of cardinality three, namely, S2 = {v3, v4, v5}. Then, hξ(C5) = 2.

Case 3: When n = 6, there only two Hh sets of cardinality three, namely, S1 =

{v1, v2, v3} and S2 = {v4, v5, v6}. So, hξ(C6) = 2.

Case 4: When n ≥ 7. By Theorem 5.2.3, and Proposition5.1.4, we have

hξ(Cn) ≤ b n

hh(Cn)
c

= b n

n− 3
c

= bn− 3 + 3

n− 3
c

= bn− 3

n− 3
+

3

n− 3
c

= b1 +
3

n− 3
c

= 1 + b 3

n− 3
c

= 1 + 0.b 3

n− 3
c = 0, n ≥ 7.

= 1

hξ(Cn) ≤ 1.
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And for any graph G, hξ(Cn) ≥ 1, so hξ(Cn) = 1.

Theorem 5.2.5. Let G be a tree with at least 3 non-leaf vertices. Then hξ(G) = 1.

Proof. Suppose that G is a tree with at least 3 non-leaf vertices. We discuss the

following cases:

Case 1. Let Hh be a set of all non-leaf vertices. Clearly, any path between two leaves

does not pass through another leaf. So, Hh is a hop hub set of G, and by Lamma

5.1.3, it is a minimum hop hub set. Now, suppose that D ⊆ V (G)−Hh is a hop hub

set of G. Since G is a tree with at least 3 non-leaf vertices, take any two non-adjacent

vertices u, v ∈ Hh. Since all vertices in D are leaves, then there is no path between u

and v with all internal vertices in D. This is a contradiction. Hence hξ(G) = 1.

Case 2. Suppose that Hh is a hop hub set of G but not containing all non-leaf

vertices. Since G has at least three non-leaf vertices, let {v1, v2, v3} be non-leaf

vertices and v1v3 /∈ E(G), let l1, l3 be leaves adjacent to v1 and v3, respectively.

Clearly, G[{l1, v1, v2, v3, l3}] is a path P5. Since hh(P5) = 3, then H contains at least

three vertices from P5. Then any other hop hub set of G must intersects H since

|P5| = 5, therefore hξ(G) = 1.

Theorem 5.2.6. For any graph G, hξ(G) ≤ δ(G) + 1.

Proof. Suppose hξ(G) > δ(G) + 1, We have the following cases :
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Case 1: If G ∼= Kn,

hξ(Kn) > δ(Kn) + 1

1 > δ(Kn) + 1

1− 1 > δ(Kn)

0 > δ(Kn).

impossible

Case 2: If G is tree, hop hubtic of tree is 1 or 2 by Theorem 5.2.5.

If hop hubtic of tree is 1 and since δ(T ) = 1, then

hξ(T ) > 1 + 1

hξ(T ) > 2

1 > 2,

this is impossible.

If hop hubtic of tree is 2, then

2 > 1 + 1

2 > 2

this is impossible.

Case 3: Now If G is not tree, then there exist some graph such that hξ(G) = δ(G),

so the relation hξ(G) > δ(G) + 1 is not true. Therefore, hξ(G) ≤ δ(G) + 1.
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Lemma 5.2.7. For any graph G, hξ(G) + daim(G) ≤ 2δ(G) + 2.

Proof. By Proposition 5.1.2, daim(G) ≤ δ(G)+1 and Theorem 5.2.6, hξ(G) ≤ δ(G)+

1, then hξ(G) + daim(G) ≤ 2δ(G) + 2.

5.3 Hop hub polynomial of graphs

In 2020, R. P. Veettil and T. V. Ramakrishnan [54] introduce hub polynomial of a

connected graph G. The hub polynomial of a connected graph G of order n is the

polynomial HG(x) =

|V (G)|∑
i=h(G)

h(G, i)xi where hG, i denotes the number of hub sets of

G of cardinality i and h is the hub number of G. And they obtain hub polynomial

of some special classes of graphs and study hub roots of some graph G. Also obtain

hub polynomial of join of two graphs.

Theorem 5.3.1. [54] The hub polynomial of the path Pn is

HPn =

(
n

2

)
xn−2 +

(
n

1

)
xn−1 + xn

Theorem 5.3.2. [54] The hub polynomial of the cycle Cn is

HCn =

(
n

3

)
xn−3 +

(
n

2

)
xn−2 +

(
n

1

)
xn−1 + xn

Theorem 5.3.3. [54] The hub polynomial of the star graph K1,n−1, n ≥ 3 is
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HK1,n−1(x) = x(1 + x)n + nxn1 + xn

5.4 Hop hub polynomial of standard graphs

Definition 5.4.1. The hop hub polynomial of a connected graph G of order n is the

polynomial

Hh(G, x) =

|V (G)|∑
i=hh(G)

hh(G, i)x
i,

where hh(G, i) denotes the number of hop hub sets of G of cardinality i and hh(G) is

the hop hub number of G.

To show this polynomial, we discuss this example.

Example 5.4.2. Let G be a graph as shown in Figure 5.2.

x x x

x

�
�

�
�
�

�
�@

@
@

@
@

@
@

u2 u3 u4

u1

Figure 5.2: Graph (G)
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We have hh(G) = 3 such that S1 = {u1, u2, u3}, S2 = {u1, u2, u4}, S3 = {u1, u3, u4}

and S4 = {u1, u2, u3, u4}, are Hh-sets of G.

Then, Hh(G, x) = 3x3 + x4.

Theorem 5.4.3. Let G be a path Pn. Then

Hh(Pn, x) =



x2 if n = 2,

2x2 + x3 if n = 3,

4x2 + 4x3 + x4 if n = 4,

7x3 + 5x4 + x5 if n = 5,

xn + nxn−1 + (
(
n
2

)
− 2)xn−2 if n ≥ 6.

Proof. We have the following cases:

Case 1: When n = 2. Let S = {v1, v2} is Hh set of P2, hence hh(P2) = 2. By

definition of hop hub polynomial,

Hh(P2, x) =
2∑
i=2

hh(P2, i)x
i = x2.

Case 2: When n = 3. Let Consider V (P3) = {v1, v2, v3} and hh(P3) = 2. Also

every subset S of vertex set of P3 consisting of 2 elements, let it be S1 = {v1, v2} and

S1 = {v2, v3}, clearly, the number of sets that contain two elements are two sets. Also

the number of sets that contain three elements is only one set. Then by definition of

hop hub polynomial, we have

Hh(P3, x) =
3∑
i=2

hh(P3, i)x
i = 2x2 + x3.
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Case 3: When n = 4, consider V (P4) = {v1, v2, v3, v4} and hh(P4) = 2. Every

subset S of vertex set of P4 consisting of 2 elements, let it be S1 = {v1, v2}, S2 =

{v3, v4}, S3 = {v1, v4} and S4 = {v2, v3}, note that the number of sets that contain

two elements are four sets. We also note that the number of sets that contain

three elements is only four set
(
4
3

)
= 4. Note that the number of sets that contain

four elements are one set. Then by definition of hop hub polynomial Hh(P4, x) =∑4
i=2 hh(G, i)x

i = 4x2 + 4x3 + x4.

Case 4: When n = 5, consider V (P5) = {v1, v2, v3, v4, v5} and hh(P5) = 3. Also

every subset S of vertex set of P5 consisting of 3 elements is
(
5
3

)
= 10 but the sets

S1 = {v2, v4, v5}, S2 = {v1, v2, v4} and S3 = {v1, v3, v5} are not hop hub set, then

every subset S of vertex set of P5 consisting of 3 elements is 7. We note that the

number of sets that contain four elements are five sets such that
(
5
4

)
= 5. Note that

the number of sets that contain five elements are one set. Then by definition of hop

hub polynomial Hh(P5, x) =
∑5

i=2 hh(G, i)x
i = 7x3 + 5x4 + x5.

Case 5: When n ≥ 6. Let Pn = {v1, v2..., vn} be a path. Then we have hh(Pn) = n−2

from Proposition 2.2.1. Also every subset of vertex set of Pn consisting of n − 2

elements and all its super sets form a hop hub set for the path Pn. Hence
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hh(Pn, n− 2) =
(
n
n−2

)
− 2 =

(
n
2

)
− 2.

hh(Pn, n− 1) =
(
n
n−1

)
=
(
n
1

)
= n.

hh(Pn, n) = 1.

Theorem 5.4.4. Let G be a cycle Cn. Then

Hh(Cn, x) =



x3 if n = 3,

4x2 + 4x3 + x4 if n = 4,

18x3 + 15x4 + 6x5 + x6 if n = 6,

−nxn−3 +
∑n

i=n−3
(
n
n−3

)
xn−3 if n=5 , n ≥ 7.

Proof. We have the following cases:

Case 1: When n = 3. Suppose that V (C3) = {v1, v2, v3} and hh(C3) = 3. It is clear

that, the number of sets that contain three elements is only one set. So by definition

of hop hub polynomial, Hh(C3, x) = x3.

Case 2: When n = 4. Consider V (C4) = {v1, v2, v3, v4} and hh(C4) = 2. Also every

hop hub subset S of vertex set of C4 consisting of 2 elements. let it be S1 = {v1, v2},

S2 = {v2, v3}, S3 = {v3, v4} and S4 = {v1, v4}. Also every hop hub sub set S of

vertex set of C4 consisting of 3 elements. let it be S1 = {v1, v2, v3}, S2 = {v2, v3, v4},

S3 = {v3, v4, v1} and S4 = {v4, v1, v2}, so the number of sets that contain three

element are four sets. Also the number of sets that contain four element is only one

set. Then by definition of hop hub polynomial Hh(P4, x) = 4x2 + 4x3 + x4.

Case 3: When n = 6. Consider V (C6) = {v1, v2, v3, v4, v5, v6} and hh(C6) = 3. Also
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every subset of vertex set of C6 consisting of 3 elements except subset S1 and S2 as

in the following Figure 5.3, and all its super sets form a hop hub set for the cycle Cn.

Hence

hh(C6, 3) =
(
6
3

)
− 2 = 20− 2 = 18.

hh(C6, 4) =
(
6
4

)
= 15.

hh(C6, 5) =
(
6
5

)
= 6.

hh(C6, 6) =
(
6
6

)
= 1.

x

x

xx

x x x x

xx x

x

v1 v2 v3 v1 v2 v3

v4 v5 v6 v4 v5 v6

S1 = {v1, v3, v5} S2 = {v2, v4, v6}

Figure 5.3: Cycle C6

Case 4: When n = 5 and n ≥ 7. Let Cn = {v1, v2, ..., vn} be a cycle. Then we have

hh(Cn) = n − 3. Also every subset of vertex set of Cn consisting of n − 3 elements

and all its super sets form a hop hub set for the cycle Cn. Hence

hh(Cn, n− 3) =
(
n
n−3

)
− n.

hh(Cn, n− 2) =
(
n
n−2

)
.

hh(Cn, n− 1) =
(
n
n−1

)
.

hh(Cn, n) =
(
n
n

)
= 1.
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Theorem 5.4.5. For the complete graph Kn, Hh(Kn, x) = xn.

Proof. Since hh(Kn) = n, and hh(Kn, n) = 1. We have Hh(Kn, x) = xn.

Proposition 5.4.6. Let G ∼= Kn. Then Hh(Kn, x) = xn.

Theorem 5.4.7. For the star graph K1,n−1,

Hh(K1,n−1, x) =
n−1∑
i=1

[(
n

i

)
−
(
n− 1

i

)]
xi + xn.

Proof. Let V (K1,n−1) = {v, v1, v1, ..., vn−1} is the vertices ofK1,n−1 and v is the central

vertex of K1,n−1, since Hh = {v, vi}, 1 ≤ i ≤ n − 1, then every hop hub set of

cardinality i must include the vertex v. The number of hop hub sets of cardinality

2 is
(
n
2

)
−
(
n−1
2

)
. The number of hop hub sets of cardinality 3 is

(
n
3

)
−
(
n−1
3

)
. So the

number of hop hub sets of cardinality i is
(
n
i

)
−
(
n−1
i

)
, i ≤ n− 1. Therefore,

Hh(K1,n−1, x) =
n−1∑
i=1

[(
n

i

)
−
(
n− 1

i

)]
xi + xn.
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