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ABSTRACT

In the present thesis, we have introduced some new sequence spaces of λ-type by means

of the classical sequence spaces of bounded and convergent series. Also, we have studied

the algebraic and topological properties of our new spaces with their Schauder bases

and isomorphic relations. Further, we have deduced some inclusion relations concerning

our new spaces and obtained their dual spaces. Moreover, we have concluded some new

results characterizing certain classes of matrix operators acting on our spaces and the

matrix operators acting into and between those spaces. Furthermore, many important

and new facts have been obtained and discussed as particular cases of our results.
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PREFACE

In modern analysis, the subject matter of functional analysis includes the study

of abstract spaces, operators and transformations of these spaces, which provides a

general framework for finding solutions of various problems in applied mathematics

and physics. Above all, a study of functional analysis in itself provides new insight and

understanding into the processes and techniques of elementary analysis which we are

accustomed to use in our everyday calculations.

One of the most general types of abstract spaces is that type of spaces with infinite-

dimensions and the sequence spaces are the most important spaces of this type. So,

many mathematicians have done a lot of work in this field of sequence spaces and

studied their matrix transformations which have been applied in all other areas of

mathematics. Thus, we have chosen this field for study and research.

In the present thesis, our contribution is to introduce some new sequence spaces

and study their topological properties, Schauder bases, inclusion relations, dual spaces

and certain classes of matrix operators on our new sequence spaces. For more utility,

we hope for the reader’s familiarity with the basic concepts of our subject. Thus, for

further knowledge in our notions, we refer the reader to [51] for basic idea of sequences

and series, to [15, 31] for elementary concepts of functional analysis, to [13, 32, 61] for

the notions of sequence spaces and to [47] for the particular sequence spaces of λ-type.

My thesis is divided into five chapters and the main results in the last four chapters

have been published in two research papers as mentioned at the beginning of each

chapter which have been presented in the 2nd conference of Albaydha University (2021).

The materials of this exposition are organized as follows:
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Chapter 1 is an introductory chapter to display the historical and theoretical

background of our subject concerning the theory of sequence spaces and their matrix

transformations with a short survey on some basic definitions, notations and prelimi-

nary results which are already known in the literature of this field.

In Chapter 2, we have introduced the new λ-sequence spaces of bounded, conver-

gent and null series, and studied their isomorphic, algebraic and topological properties

with contracting their Schauder bases.

Chapter 3 is devoted to derive some interesting inclusion relations between our

new spaces and the classical sequence spaces, and some particular cases of equalities

and strict inclusions will be discussed with important examples.

In Chapter 4, we have concluded the Köthe-Toeplitz duals of our new λ-sequence

spaces defined in terms of series.

Chapter 5 is devoted to characterize the related classes of matrix operators acting

on our new spaces and the matrix operators acting into and between those spaces, and

some known or new results will be deduced as particular cases.

The obtained facts are those remarks, examples, lemmas or theorems, which are

presented throughout this thesis as paragraphs and every paragraph is associated with

triple decimal numbering. The first number indicates the chapter, the second represents

the section, and the third refers to the number of current paragraph. For example, the

form 3.2.1 refers to the first paragraph (remark, example, lemma or theorem) appearing

in Section 2 of Chapter 3.

At the end of this monograph, we have given an exhaustive list of relevant ref-

erences to the literature presented in this thesis. All results stated without proof are

cited and can be found in the references given either before or after the statements.
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Chapter 1

INTRODUCTION



1 INTRODUCTION

The theory of sequence spaces and matrix transformations is an interesting area for

research in summability theory as a part of functional analysis. In this first chapter,

we display a historical and theoretical background of our subject concerning the theory

of sequence spaces and their matrix transformations with a short survey on some basic

definitions, notations and preliminary results which are already known in the litera-

ture of this field. This introductory chapter is divided into three sections, the first is

devoted to the theoretical frame, the second is for the research methodology and the

last is to present some preliminary results which will be needed in the sequel.

1.1 Theoretical Frame

In this section, we display a historical background for the theory of sequence spaces

and matrix transformations, and we give a short survey on some basic concepts of this

area with certain previous studies.

1.1.1 Historical Background

Von Neumann began the analysis of the frame work of quantum mechanics in the

years following 1926 but there were few attempts to study the structure of specific

quantum systems (exceptions would be some of the work of Frèchet and Rollick). This

situation changed in the early 1950’s when Kato proved the self adjointness of atomic

Hamiltonians and Garding and Wightman formulated the axioms for quantum field

theory. These events demonstrated the usefulness of functional analysis.
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Functional analysis was founded by S. Banach, M. Fréchet, H. Hahn, F. Hausdorff,

D. Hilbert, F. Riesz and others. These names have become synonymous with the

tools of this subject. Such tools have turned out to be powerful and widely used in

several areas of functional analysis, especially in summability theory which encompasses

a variety of fields and has many applications in various subjects. For instance, in

numerical analysis, approximation theory, operator theory and the theory of differential

equations and orthogonal series with their special functions. The summability theory

has been originated from the attempts made by the mathematicians to give limits to

the divergent sequences and series [32].

In particular, the theory of sequence spaces and matrix transformations is a signif-

icant area of research in summability theory and so many mathematicians have done

a lot of work in this field. In fact, the most important methods of summability are

given by infinite matrices and their matrix transformations. So that, our concern is

with those infinite matrices that map a sequence space into another one. Such matrices

arise naturally from the infinite-dimensions of sequence spaces [34].

But, why we should study matrix operators and transformations between sequence

spaces; why not study the general linear operators ? The reason is that, in many

important cases, the most general linear operators acting between sequence spaces are

actually determined by infinite matrices. So, there is no loss of generality in such study.

Moreover, there is often a gain in that specific conditions on the entries of an infinite

matrix which may be easy to verify.

The interest in matrix transformations was stimulated by special results in the

summability theory which were obtained by E. Cesàro, L. Euler, N. Nörlund, F. Riesz

and others. The earliest idea of summability were perhaps contained in a letter written

2



by Leibnitz to C. Wolf in 1713, the sum of the oscillatory series 1 − 1 + 1 − · · ·

as given by Leibnitz was in 1880. After that, Frobenius introduced the method of

summability by arithmetic mean which has later been generalized by Cesàro in 1890 as

the (C, α) method of summability. With the emergence of functional analysis, sequence

spaces were studied with greater insight and motivation and the earliest applications

of functional analysis to summability was made by S. Banach, H. Hahn, S. Mazur, G.

Köthe and O. Toeplitz. In 1911, the celebrated mathematician Toeplitz determined

the necessary and sufficient conditions for an infinite matrix to be regular, that is,

he characterized those conservative matrices that preserve the limits invariant. In

fact, Toeplitz was the first person who studies the summability methods as a class of

operators defined on sequences by infinite matrices. It was followed by the works done

by I. Schur, W. Orlicz, K. Knopp, G. Petersen, H. Nakano, S. Simons, G. Lorentz, G.

Hardy, A. Wilansky, I. Maddox, W. Sargent, C. Lascarides, S. Nanda, D. Rath, G.

Das, Z. Ahmed, H. Kızmaz B. Kuttner and many others like Russell and Rhoade [14].

After many years, exactly in 1950, Robinson initiated the study of summability by

infinite matrices of linear operators on normed linear spaces which enabled the workers

on summability to extend their results. Also, in 1951, the famous mathematician K.

Zeller introduced the concept of BK spaces∗ which have proved its useful in summa-

bility theory, especially in the characterizations of matrix transformations between

sequence spaces, and the most important result is that matrix operators between BK

spaces are continuous [61].

The sequence spaces were motivated by problems in Fourier series, power series

and systems of equations with infinitely many variables, and the theory of sequence
∗The letters B and K stand for Banach and the German word Koordinate which means ‘coordi-

nate’ as in the Zeller’s terminology.
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spaces and infinite matrices occupies a very prominent position in several branches of

analysis and plays an important role in various fields of Mathematics as a powerful and

pervading tool in almost all these branches with several important applications. For

example, in the structural theory of topological vector spaces, Schauder basis theory

and theory of differential equations and special functions [8].

Recently, the sequence spaces have been generalized in several directions by many

mathematicians and some of them introduce new sequence spaces and study their var-

ious properties. At the present time, a lot of work have been done by many researchers

around the world, like Boos, Rakočević, Malkowsky, Savaş, Başar, Altay, Mursaleen,

Noman, Karakaya, Kiriçi, Kara, Polat and many others, only a few was named (e.g.,

see [4, 5, 6, 10, 11, 16, 18, 20, 22, 23, 24, 25, 26, 27, 36, 47, 53, 55, 63, 64]).

1.1.2 Basic Concepts and Notations

Here, we give a short survey on the basic definitions, concepts and notions which

are the elementary tools in the theory of sequence spaces and matrix transformations.

Also, we will define our common notations which are usually used by all authors and

researchers in this area. Thus, our terminologies, as given here, will have the same

meanings throughout this thesis (unless stated otherwise).

Let K be the scalar field (of real or complex numbers), that is K = R or C, and so

our scalars are either real or complex numbers (according to the case of our spaces).

Also, we will use the symbols k and n to be positive integers while p, q ≥ 1 are reals.

By the word ”sequence”, we mean an infinite sequence of real or complex terms, and

if x = (x1, x2, x3, · · · ) is a real or complex sequence; then we denote it by x = (xk)
∞
k=1

or simply x = (xk), where xk is called the k-th term of x. Further, we shall use
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the following conventions: the first is that any term with a non-positive subscript

is assumed to be nothing (e.g., the terms x0 and x−1 have no meaning and can be

considered to be not exist). Next, we will frequently use the sequences e = (1, 1, 1, . . .)

and ek for each k ≥ 1, where ek is the sequence whose only one non-zero term which is

1 in the k-th place for each k ≥ 1, that is e1 = (1, 0, 0, · · · ), e2 = (0, 1, 0, 0, · · · ), · · · etc.

Also, the absolute value of a sequence x and its positive power are defined by means

of their meanings for its scalar-terms, that is |x| = (|xk|) and |x|r = (|xk|r) for any

real r > 0. The last conventions are concerning with some algebraic operations defined

on sequences, namely the coordinate-wise addition, scalar multiplication, product and

division. More precisely, if x = (xk) and y = (yk) are sequences and α ∈ K is a

scalar; then x ± y = (xk ± yk), αx = (αxk), xy = (xkyk) and if yk ̸= 0 for all k; then

x/y = (xk/yk) and 1/y = (1/yk).

Together with any sequence x = (xk), there always exist two sequences, namely

the difference sequence ∆(x) and the sum sequence σ(x), where

∆(x) = (x1, x2 − x1, x3 − x2, · · · ) and σ(x) = (x1, x1 + x2, x1 + x2 + x3, · · · ).

That is ∆(x) = (∆(xk) )
∞
k=1 = ( xk − xk−1 )

∞
k=1 and σ(x) = ( σk(x) )

∞
k=1 = (

∑k
j=1xj )

∞
k=1

which leads us to write their terms as follows:

σk(x) =
k∑

j=1

xj and ∆(xk) = xk − xk−1 with ∆(x1) = x1 (k ≥ 1). (1.1.1)

The sequence x = (xk) is said to be bounded if there exists a positive real M > 0 such

that |xk| ≤ M for all k ≥ 1, that is x is bounded if and only if supk |xk| < ∞, where

the supremum of |xk| is taken over all positive integers k. Also, the sequence x is said

to be convergent if its limit limk→∞ xk exists. In particular, by a null sequence, we

mean a convergent sequence which converges to zero, i.e. limk→∞ xk = 0.
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Every sequence x = (xk) is associated with a series
∑∞

k=1 xk whose terms are

exactly those of x and so it has the same sequence of partial sum which is σ(x). Thus,

it seems to be quite natural to similarly say that
∑∞

k=1 xk is a null, convergent or

bounded series if its sequence of partial sum σ(x) is a null, convergent or bounded

sequence, respectively. That is, the series
∑∞

k=1 xk is bounded if supn |
∑n

k=1 xk| < ∞,

and it is convergent if limn→∞
∑n

k=1 xk exists. Also, by a null series, we mean a series

which converges to zero, i.e. limn→∞
∑n

k=1 xk = 0 which yields that
∑∞

k=1 xk = 0.

A series
∑∞

k=1 xk is said to be absolutely convergent if the series
∑∞

k=1 |xk| converges

and we denote it by
∑∞

k=1 |xk| < ∞ (it is well-known that absolute convergence of series

implies their convergent, but the converse is not). In general, for any real p ≥ 1, the

series
∑∞

k=1 xk is said to be p-absolutely convergent if
∑∞

k=1 |xk|p < ∞.

A sequence x = (xk) is said to be of bounded variation if
∑∞

k=1 |xk − xk−1| < ∞

or equivalently
∑∞

k=1 |∆(xk)| < ∞. In general, for any real p ≥ 1, we say that x is of

p-bounded variation if
∑∞

k=1 |xk − xk−1|p < ∞ or
∑∞

k=1 |∆(xk)|p < ∞ [9].

By w, we denote the linear space of all (real or complex) sequences over the

scalar field K (with coordinate-wise addition and scalar multiplication) and any vector

subspace of w is called a sequence space. Throughout, we shall write ℓ∞, c and c0 for

the sequence spaces of all bounded, convergent and null sequences, respectively. Also,

for each real 1 ≤ p < ∞, the sequence space ℓp is consisting of all sequences associated

with p-absolutely convergent series. These sequence spaces are known as the classical

sequence spaces [34]. Further, we write bs, cs and cs0 for the spaces of all sequences

associated with bounded, convergent and null series, respectively. Moreover, by ℓ∞(∆),

c(∆) and c0(∆), we stand for the difference spaces of bounded, convergent and null

difference sequences, respectively. Furthermore, for each real 1 ≤ p < ∞, we denote
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the space of all sequences of p-bounded variation by bvp. That is, we have:

c0 =
{
x = (xk) ∈ w : limk→∞ xk = 0

}
,

c =
{
x = (xk) ∈ w : limk→∞ xk exists

}
,

ℓ∞ =
{
x = (xk) ∈ w : supk |xk| < ∞

}
,

ℓp =
{
x = (xk) ∈ w :

∑∞
k=1 |xk|p < ∞

}
(1 ≤ p < ∞),

cs0 =
{
x = (xk) ∈ w : limn→∞

∑n
k=1 xk = 0

}
,

cs =
{
x = (xk) ∈ w : limn→∞

∑n
k=1 xk exists

}
,

bs =
{
x = (xk) ∈ w : supn

∣∣∑n
k=1 xk

∣∣ < ∞
}

,

c0(∆) =
{
x = (xk) ∈ w : limk→∞(xk − xk−1) = 0

}
,

c(∆) =
{
x = (xk) ∈ w : limk→∞(xk − xk−1) exists

}
,

ℓ∞(∆) =
{
x = (xk) ∈ w : supk |xk − xk−1| < ∞

}
,

bvp =
{
x = (xk) ∈ w :

∑∞
k=1 |xk − xk−1|p < ∞

}
(1 ≤ p < ∞),

and we define the sequence space bv0 by bv0 = c0 ∩ bv1 [34].

A normed sequence space is of course a sequence space X equipped with a norm

∥ · ∥ defined on X as a mapping ∥ · ∥ : X → R such that ∥x∥ ≥ 0, x = 0 whenever

∥x∥ = 0, ∥αx∥ = |α|∥x∥ and ∥x + y∥ ≤ ∥x∥ + ∥y∥ for all x, y ∈ X and every α ∈ K.

A normed sequence space X is called a Banach sequence space if it is complete with

the topology generated by its norm. Also, as it is the case for arbitrary normed

spaces, if a normed sequence space X contains a sequence (bk)
∞
k=1 with the property

that for every x ∈ X there exists a unique sequence (αk)
∞
k=1 of scalars such that

limn→∞ ∥x− (α1b1 + α2b2 + · · ·+ αnbn)∥ = 0; then the sequence (bk)
∞
k=1 is called a

Schauder basis for X (or simply a basis for X) and the series
∑∞

k=1 αkbk which has
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the sum x is then called the expansion of x, with respect to the given basis, and we

then say that x has uniquely been represented in the form x =
∑∞

k=1 αkbk. Further, a

normed sequence space X is said to be separable if it contains a countable dense subset,

and it is well-known that every Banach space with Schauder basis must be separable.

Furthermore, if X is a normed sequence space; then for each positive integer k, there

exists a mapping πk : X → K defined by x 7→ πk(x) = xk for all x ∈ X, these mappings

πk’s (for all k) are called the coordinate-maps of X or the coordinates of X, where K

is the scalar field of X [8].

A normed sequence space X is called a BK space if it is complete and all its

coordinate-maps are continuous. In other words, by a BK space, we mean a Banach

sequence space with continuous coordinates. It is well-known that the above mentioned

sequence spaces are all BK spaces with their natural norms. More precisely, the spaces

ℓ∞, c and c0 are BK spaces with the sup-norm ∥ · ∥∞ given by ∥x∥∞ = supk |xk|. Also,

for 1 ≤ p < ∞, the spaces ℓp are BK spaces with the p-norm ∥ · ∥p defined by

∥x∥p = (
∑∞

k=1|xk|p )1/p and the spaces bvp are BK spaces with their norm ∥ · ∥bvp

given by ∥x∥bvp = (
∑∞

k=1|xk − xk−1|p )1/p. Moreover, the spaces bs, cs and cs0 are

BK spaces with the series-norm ∥ · ∥s defined by ∥x∥s = supn |
∑n

k=1xk |. Besides, the

difference spaces ℓ∞(∆), c(∆) and c0(∆) are BK spaces with the ∆-norm ∥ · ∥∆ given

by ∥x∥∆ = supk |xk − xk−1| [14].

For any sequence space X, the concept of Köthe-Toeplitz duality of X, so-called

as the α-, β- and γ-duals of X can simply be given by means of the spaces ⟨α⟩ = ℓ1,

⟨β⟩ = cs and ⟨γ⟩ = bs. For this, let θ be any of the duality symbols α, β or γ, that is

θ := α, β or γ. Then, the θ-dual of X is a sequence space denoted by Xθ which can
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be defined as follows:

Xθ = {a ∈ w : ax ∈ ⟨θ⟩ for all x ∈ X} (θ = α, β or γ), (1.1.2)

where ⟨α⟩ = ℓ1, ⟨β⟩ = cs and ⟨γ⟩ = bs. In other words, the α-, β- and γ-duals of X are

respectively denoted by Xα, Xβ and Xγ which are sequence spaces defined as follows:

Xα =
{
a = (ak) ∈ w : ax = (akxk) ∈ ℓ1 for all x = (xk) ∈ X

}
,

Xβ =
{
a = (ak) ∈ w : ax = (akxk) ∈ cs for all x = (xk) ∈ X

}
,

Xγ =
{
a = (ak) ∈ w : ax = (akxk) ∈ bs for all x = (xk) ∈ X

}
.

Besides, it is well-known that Xα ⊂ Xβ ⊂ Xγ, the inclusion X ⊂ Y implies that

Y θ ⊂ Xθ, and we have c θ0 = c θ = ℓ θ∞ = ℓ1, ℓ θ1 = ℓ∞ and ℓ θp = ℓq for p > 1 with

q = p/(p−1), where X and Y are sequence spaces. The basic properties of dual spaces

can be found in [8, 21, 33].

Due to the infinite dimensions of sequence spaces in the general case, the notion

of matrix transformations between sequence spaces has been arisen for study the linear

operators between such spaces which can be given by infinite matrices. For an infinite

matrix A with real or complex entries ank (n, k ≥ 1), we write A = [ank]
∞
n,k=1 or simply

A = [ank], and we will write An for the n-th row sequence in A, that is An = (ank)
∞
k=1

for each n ≥ 1. Also, for any sequence x ∈ w, the A-transform of x, denoted by A(x),

is defined to be the sequence A(x) = (An(x))
∞
n=1 whose terms given by

An(x) =
∞∑
k=1

ank xk (n ≥ 1) (1.1.3)

provided the convergence of series for each n ≥ 1 and we then say that A(x) exists.

Further, for any two sequence spaces X and Y , we say that A acts from X into Y if

A(x) exists and A(x) ∈ Y for every x ∈ X [47]. Furthermore, the matrix class (X,Y )
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is define to be the collection of all infinite matrices acting from X into Y . In particular,

an infinite matrix A is said to be conservative if A ∈ (c, c) and a conservative matrix

A is said to be regular if limn→∞An(x) = limn→∞ xn for all x ∈ c [32]. In fact, there

may exists an infinite matrix A such that A /∈ (X,Y ) and so the infinite matrices in

the class (X,Y ) must be characterized from those matrices which are not in (X,Y ).

That is, there must exist a list of necessary and sufficient conditions on the entries of a

given infinite matrix A to be in the class (X,Y ), where A ∈ (X,Y ) if and only if A(x)

exists as well as A(x) ∈ Y for every x ∈ X. In other words, A ∈ (X,Y ) if and only

if An ∈ Xβ for every n ≥ 1 and A(x) ∈ Y for all x ∈ X, and so the β-duality is an

important tool for characterizing matrix classes [21]. Obviously, if A ∈ (X,Y ); then

A defines a linear operator A : X → Y by x 7→ A(x), and we may call it as a matrix

operator (matrix mapping) and the same for every linear operator from X into Y which

can be given by an infinite matrix. That is, a linear operator between sequence spaces

L : X → Y is called a matrix operator if there exists an infinite matrix A ∈ (X,Y ) such

that L(x) = A(x) for all x ∈ X and we then say that L is given by an infinite matrix,

viz A. Moreover, it is worth mentioning that the most general forms of linear operators

between sequence spaces can be given by infinite matrices [34]. This fact gives a special

importance for the notion of matrix transformations between sequence spaces, which

has been studied by several authors in many research papers (see [33, 35, 58]) and

has recently been used to introduce new sequence spaces and characterize their matrix

classes by means of the idea of matrix domains (see [27, 34, 43]). For an infinite matrix

A and a sequence space X, the matrix domain of A in X is a sequence space denoted

by XA and defined as follows:

XA = {x ∈ w : A(x) ∈ X}. (1.1.4)
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The most useful cases of matrix domains are those obtained from special types of

infinite matrices called as triangles, where an infinite matrix T = [tnk]
∞
k,n=1 is called a

triangle if tnn ̸= 0 for every n ≥ 1 and tnk = 0 for all k > n (n, k ≥ 1). For example, the

sum-matrix σ and the band-matrix ∆ are infinite matrices which are triangles defining

the partial sum and the difference operator, respectively. To see that, the triangles

σ =


1 0 0 0 · · ·
1 1 0 0 · · ·
1 1 1 0 · · ·
1 1 1 1 · · ·
... ... ... ...

 and ∆ =


1 0 0 0 · · ·
−1 1 0 0 · · ·
0 −1 1 0 · · ·
0 0 −1 1 · · ·
... ... ... ...

 .

have the transforms σ(x) = (σn(x)) and ∆(x) = (∆(xn)) which can be obtained by

using (1.1.3) to get σn(x) =
∑n

k=1 xk and ∆(xn) = xn − xn−1 for all n ≥ 1 with

∆(x1) = x1 which is the same result as given in (1.1.1), where x ∈ w. That is,

the sum sequence σ(x) and the difference sequence ∆(x) are respectively the σ- and

∆-transforms of x. This fact, together with (1.1.4), leads us to obtain the following:

cs0 = (c0)σ = {x ∈ w : σ(x) ∈ c0},

cs = (c)σ = {x ∈ w : σ(x) ∈ c},

bs = (ℓ∞)σ = {x ∈ w : σ(x) ∈ ℓ∞},

c0(∆) = (c0)∆ = {x ∈ w : ∆(x) ∈ c0},

c(∆) = (c)∆ = {x ∈ w : ∆(x) ∈ c},

ℓ∞(∆) = (ℓ∞)∆ = {x ∈ w : ∆(x) ∈ ℓ∞},

bvp = (ℓp)∆ = {x ∈ w : ∆(x) ∈ ℓp} (1 ≤ p < ∞)

which means that these spaces are the matrix domains of the triangles σ and ∆ in the

classical sequence spaces [8]. This idea has been applied by many authors in several

interesting studies as presented in the next section.
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1.1.3 Previous Studies

The approach constructing a new sequence space by means of the matrix domain

of a particular infinite matrix has been employed by Maddox, Wang, Ng, Lee, Kızmaz,

Rakočević, Malkowsky, Savaş, Başar, Altay, Mursaleen, Noman, Karakaya, Kiriçi,

Kara, Polat, Aydın, Bektaş and many others (e.g., see [4, 5, 6, 10, 11, 16, 18, 20, 22,

23, 24, 25, 26, 27, 36, 47, 53, 55, 63, 64]). More recently, due to the various properties

of the triangles as an important particular case of infinite matrices, (for instance, the

matrix domains of triangles in BK spaces are also BK spaces), the idea of introducing

a new sequence space by means of the matrix domain of a given triangle has largely

been used by several authors in many research studies with different manners. For

instance, we display here the following previous studies:

(1) The Cesàro sequence spaces have been constructed by Ng and Lee in 1978

[46] (see also Şengönül and Başar, 2005 [54]) as domains of the Cesàro matrix C1 of

arithmetic mean in the spaces ℓp for 1 ≤ p ≤ ∞, that is

c1p = {x ∈ w : C1(x) ∈ ℓp} (1 ≤ p ≤ ∞)

which are BK spaces with ∥x∥c1p = ∥C1(x)∥p, where

C1
n(x) =

1

n

∑n

k=1
xk (n ≥ 1).

(2) The difference sequence spaces have been studied by Kızmaz in 1981 [29, 30]

as domains of the band matrix ∆ of difference in the spaces c0, c and ℓ∞, that is

µ(∆) = {x ∈ w : ∆(x) ∈ µ} (µ = c0, c or ℓ∞)

which are BK spaces with ∥x∥∆ = ∥∆(x)∥∞, where ∆(xn) = xn − xn−1 for all n ≥ 1

and ∆(x1) = x1.
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(3) The sequence spaces of p-bounded variation have been studied by Başar

and Altay in 2003 [9] as domains of the band matrix ∆ of difference in the spaces

ℓp for 1 ≤ p ≤ ∞, that is bvp = {x ∈ w : ∆(x) ∈ ℓp} which are BK spaces with

∥x∥bvp = ∥∆(x)∥p for all x ∈ bvp (1 ≤ p ≤ ∞).

(4) The Euler sequence spaces have been introduced by Altay and Başar in 2005

[2] (and together with Mursaleen, 2006 [3, 38]) as domains of the Euler matrix Er in

the spaces c0, c, ℓ∞ and ℓp for 1 < p < ∞, that is

er0 = {x ∈ w : Er(x) ∈ c0}, erc = {x ∈ w : Er(x) ∈ c},

er∞ = {x ∈ w : Er(x) ∈ ℓ∞}, erp = {x ∈ w : Er(x) ∈ ℓp}.

Also er0, erc and er∞ are BK spaces with ∥x∥Er = ∥Er(x)∥∞ and all erp are BK spaces

with ∥x∥Er
p
= ∥Er(x)∥p (1 < p < ∞), where 0 < r < 1 and

Er
n(x) =

∑n

k=1

(
n− 1
k − 1

)
(1− r)n−k rk−1 xk (n ≥ 1).

(5) The generalized Cesàro sequence spaces have been studied by Malkowsky

and Rakočević in 2007 [34] as domains of the generalized Cesàro matrix (C, α) of order

α in the spaces µ, where µ = c0, c, ℓ∞ or ℓp (1 ≤ p < ∞), that is

µ(C, α) = {x ∈ w : (C, α)(x) ∈ µ}

which are BK spaces with ∥x∥µ(C,α) = ∥(C, α)(x)∥µ, where α > 0 and

(C, α)n(x) =
(n− 1)!α

Γ(α + n)

∑n

k=1

Γ(α + n− k + 1)

(n− k + 1)!
xk (n ≥ 1).

(6) The sequence spaces of weighted means have been constructed by Malkowsky

and Savaş in 2008 [35] as domains of the matrix W t
s of weighted means in the spaces

13



µ, where µ = c0, c or ℓ∞, that is wt
s(µ) = {x ∈ w : W t

s(x) ∈ µ} which are BK spaces

with ∥x∥wt
s
= ∥W t

s(x)∥∞, where s and t are sequences of non-zero scalars and

(W t
s)n(x) =

1

sn

∑n

k=1
tkxk (n ≥ 1).

(7) The sequence spaces of generalized means have been defined by Mursaleen

and Noman in 2011 [43] as domains of the matrix A(r, s, t) of generalized means in

the spaces µ, where µ = c0, c, ℓ∞ or ℓp (1 ≤ p < ∞), that is µ(r, s, t) = {x ∈ w :

A(r, s, t)(x) ∈ µ} which are BK spaces with ∥x∥µ(r,s,t) = ∥A(r, s, t)(x)∥µ, where r and

t are sequences of non-zero scalars, s is a sequence with first term s1 ̸= 0 and

A(r, s, t)n(x) =
1

rn

∑n

k=1
sn−k+1tk xk (n ≥ 1).

(8) The λ-sequence spaces have been introduced by Mursaleen and Noman in 2010

- 2011 [39, 41, 42] as domains of the λ-matrix Λ in the spaces c0, c, ℓ∞ and ℓp for

1 < p < ∞, that is

cλ0 = {x ∈ w : Λ(x) ∈ c0}, cλ = {x ∈ w : Λ(x) ∈ c},

ℓλ∞ = {x ∈ w : Λ(x) ∈ ℓ∞}, ℓλp = {x ∈ w : Λ(x) ∈ ℓp}.

Also cλ0 , cλ and ℓλ∞ are BK spaces with ∥x∥Λ = ∥Λ(x)∥∞ and all ℓλp are BK spaces

with ∥x∥Λp = ∥Λ(x)∥p (1 < p < ∞), where λ = (λk) is a strictly increasing sequence

of positive reals and

Λn(x) =
1

λn

∑n

k=1
(λk − λk−1)xk (n ≥ 1).

It is worth mentioning that the notions of λ-matrix and λ-sequence spaces have been

taken away by researchers and authors upto so far limits. For instance, they have

introduced the concept of almost convergence of double sequences by using the λ-

matrix and λ-sequence spaces (e.g., by Ahmad and Ganie in 2013 [1] and by Raj with
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others in 2015 [52]) and they have studied the general difference forms of the λ-matrix

and λ-sequence spaces (e.g., by Sönmez and others in 2012 [56] and by Bişgin with

others in 2014 [11]). Further, we will display the following studies depending on the

λ-matrix and λ-sequence spaces:

(9) The Aλ-sequence spaces have been constructed by Braha and Başar in 2013

[14] as domains of the matrix Aλ in the spaces c0, c and ℓ∞, that is

Aλ(µ) = {x ∈ w : Aλ(x) ∈ µ} (µ = c0, c or ℓ∞)

which are BK spaces with ∥x∥Aλ
= ∥Aλ(x)∥∞, where Aλ is the same matrix Λ with

the sequence ∆(λ) instead of λ provided that ∆(λ) is increasing, that is

(Aλ)n(x) =
1

∆(λn)

∑n

k=1
(∆(λk)−∆(λk−1))xk (n ≥ 1).

(10) The ∆λ
u-sequence spaces have been studied by Ganie and Sheikh in 2013 [19]

as domains of the matrix ∆λ
u in the spaces c0, c and ℓ∞, that is

µ(∆λ
u) = {x ∈ w : ∆λ

u(x) ∈ µ} (µ = c0, c or ℓ∞)

which are BK spaces with ∥x∥∆λ
u
= ∥∆λ

u(x)∥∞, where u = (uk) is a real or complex

sequence of non-zero terms and

(∆λ
u)n(x) =

1

λn

∑n

k=1
uk(λk − λk−1) (xk − xk−1) (n ≥ 1).

(11) The ∆λ
v -sequence spaces have been introduced by Ercan and Bektaş in 2014

[17] as domains of the matrix ∆λ
v in the spaces c0, c and ℓ∞, that is

µλ(∆v) = {x ∈ w : ∆λ
v(x) ∈ µ} (µ = c0, c or ℓ∞)

which are BK spaces with ∥x∥∆λ
v
= ∥∆λ

v(x)∥∞, where v = (vk) is a real or complex

sequence of non-zero terms and

(∆λ
v)n(x) =

1

λn

∑n

k=1
(λk − λk−1) (vkxk − vk−1xk−1) (n ≥ 1).
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(12) The Uλ-sequence spaces have been constructed by Zeren and Bektaş in 2014

[67] as domains of the matrix Uλ in the spaces c0, c and ℓ∞, that is

µλ(u) = {x ∈ w : Uλ(x) ∈ µ} (µ = c0, c or ℓ∞)

which are BK spaces with ∥x∥Uλ = ∥Uλ(x)∥∞, where u = (uk) is a real or complex

sequence of non-zero terms and

Uλ
n (x) =

un

λn

∑n

k=1
(λk − λk−1)xk (n ≥ 1).

(13) The binomial sequence spaces have been studied by Bişgin in 2016 [12] as

domains of the binomial matrix Br,s in the spaces ℓp for 1 ≤ p ≤ ∞, that is

br,sp = {x ∈ w : Br,s(x) ∈ ℓp} (1 ≤ p ≤ ∞)

which are BK spaces with ∥x∥Br,s
p

= ∥Br,s(x)∥p (1 ≤ p ≤ ∞), where r and s are

non-zero reals such that r + s ≠ 0 and

Br,s
n (x) =

1

(r + s)n−1

∑n

k=1

(
n− 1
k − 1

)
sn−k rk−1 xk (n ≥ 1).

(14) The Taylor sequence spaces have been introduced by Talebi in 2017 [59] as

domains of the Taylor matrix T θ in the spaces ℓp for 1 ≤ p ≤ ∞, that is

tθp = {x ∈ w : T θ(x) ∈ ℓp} (1 ≤ p ≤ ∞)

which are BK spaces with ∥x∥T θ
p
= ∥T θ(x)∥p (1 ≤ p ≤ ∞), where 0 ≤ θ < 1 and

T θ
n(x) =

∑∞

k=n

(
k
n

)
(1− θ)n+1 θk−n xk (n ≥ 1).

(15) The Pascal sequence spaces have been constructed by Aydin and Polat in

2018 [7] as domains of the Pascal matrix P in the spaces c0, c and ℓ∞, that is

P0 = {x ∈ w : P (x) ∈ c0}, Pc = {x ∈ w : P (x) ∈ c}, P∞ = {x ∈ w : P (x) ∈ ℓ∞}
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which are BK spaces with ∥x∥P = ∥P (x)∥∞, where

Pn(x) =
∑n

k=1

(
n− 1
n− k

)
xk (n ≥ 1).

(16) The Pascal difference spaces have been studied by Aydin and Polat in 2019

[50] as domains of the generalized band matrix ∆(m) of order m in the Pascal sequence

spaces P0, Pc and P∞, that is

η(∆(m)) = {x ∈ w : ∆(m)(x) ∈ η} (η = P0, Pc or P∞)

which are BK spaces with ∥x∥P (∆(m)) = ∥P (∆(m)(x))∥∞, where P is Pascal matrix and

∆(m)
n (x) =

∑n

k=max{1, n−m}
(−1)n−k

(
m

n− k

)
xk (n ≥ 1).

(17) The tribonacci sequence spaces have been introduced by Yaying and Kara

in 2021 [65] as domains of the tribonacci matrix T in the spaces c0 and c, that is

c0(T ) = {x ∈ w : T (x) ∈ c0} and c(T ) = {x ∈ w : T (x) ∈ c}

which are BK spaces with ∥x∥T = ∥T (x))∥∞, where

Tn(x) =
2

tn+2 + tn − 1

∑n

k=1
tk xk (n ≥ 1)

and t = (tk) is the sequence of tribonacci numbers [65].

Furthermore, we refer the reader to [4, 5, 6, 10, 11, 16, 18, 20, 22, 23, 24, 25, 26, 27,

36, 47, 53, 55, 63, 64] for additional similar studies constructing new sequence spaces

by means of the concept of matrix domains.

1.2 Research Methodology

In this section, we display the research methodology used in our investigation.
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1.2.1 Research Problem

By going on through the previous studies in the last section, it maybe noted that

there is a gap in the knowledge which was left by researchers in the literature of the

modern theory of sequence spaces. More precisely, many new sequence spaces of the

λ-type have been introduced and studied, but the λ-sequence spaces defined by series

have not. Thus, we are going to fill up that gap in the literature by introducing and

study the λ-sequence spaces of bounded, convergent and null series.

1.2.2 Research Objectives

In this study, our aim is to add the following contributions:

• Introducing some new λ-sequence spaces of bounded, convergent and null series.

• Study some algebraic and topological properties of our new λ-sequence spaces.

• Constructing the Schauder bases for our new λ-sequence spaces.

• Deducing some new inclusion relations between these new spaces.

• Concluding the Köthe-Toeplitz duals of our new λ-sequence spaces.

• Characterizing some new classes of matrix operators between our spaces.

1.2.3 Research Tools

In the present thesis, our study and investigation will be based on the usual math-

ematical tools as the proof and conclusion, and the usual mathematical methodology

as the mathematical induction and investigation. Also, many mathematical concepts

will be used as main tools in our thesis, and the most important tools among them are

sequence, series, matrix and space.
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1.3 Preliminaries

In this section, we give a list of the preliminary results which will be used in

proving the main results in this thesis. These preliminaries are already known in the

literature of the theory of sequence spaces and matrix transformations.

Lemma 1.3.1 (Boos [13]) If p < p′ (1 ≤ p < ∞); then the inclusions ℓp ⊂ ℓp′ and

bvp ⊂ bvp′ are strictly satisfied. Further, we have the following strict inclusions:

c0 ⊂ c ⊂ ℓ∞, ℓp ⊂ c0, ℓp ⊂ bvp ⊂ c0(∆), cs0 ⊂ cs ⊂ bs,

c0(∆) ⊂ c(∆) ⊂ ℓ∞(∆), bs ⊂ ℓ∞ ⊂ ℓ∞(∆), bv1 ⊂ c ⊂ c0(∆), ℓ1 ⊂ cs ⊂ c0.

Lemma 1.3.2 (Maddox [32]) We have the following facts:

(1) The spaces ℓ∞, c and c0 are BK spaces with the sup-norm ∥ · ∥∞ given by

∥x∥∞ = supk |xk|.

(2) The spaces bs, cs and cs0 are BK spaces with the series-norm ∥ · ∥s defined by

∥x∥s = supn |
∑n

k=1xk |.

Lemma 1.3.3 (Malkowsky and others [34]) We have the following facts:

(1) The sequence (e1, e2, e3, · · · ) is a Schauder basis for the space c0 and every

x ∈ c0 has the unique representation x =
∑∞

k=1 xk ek.

(2) The sequence (e, e1, e2, · · · ) is a Schauder basis for the space c and every x ∈ c

has the unique representation x = Le+
∑∞

k=1(xk − L) ek, where L = limk→∞ xk.

(3) The spaces c0 and c are separable while the space ℓ∞ is not separable and has

no Schauder basis (in general, if X is a Banach sequence space with Schauder basis;

then it must be separable).
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Lemma 1.3.4 (Wilansky [61]) Let X and Y be sequence spaces. Then, we have the

following:

(1) Xα ⊂ Xβ ⊂ Xγ.

(2) If X ⊂ Y ; then Y θ ⊂ Xθ, where θ = α, β or γ.

(3) c θ0 = c θ = ℓ θ∞ = ℓ1, ℓ θ1 = ℓ∞ and ℓ θp = ℓq for p > 1 with q = p/(p− 1).

Lemma 1.3.5 (Darling [21]) We have the following:

(1) cs0
α = ℓ1, csα = ℓ1 and bsα = ℓ1.

(2) cs0
β = bv1, csβ = bv1 and bsβ = bv0.

(3) cs0
γ = bv1, csγ = bv1 and bsγ = bv1.

Lemma 1.3.6 (Banaś and others [8]) Let X,Y and Z be sequence spaces, and A an

infinite matrix. Then:

(1) A ∈ (X,Y ) ⇐⇒ An ∈ Xβ for every n ≥ 1 and A(x) ∈ Y for all x ∈ X.

(2) If X ⊂ Y ; then (Y, Z) ⊂ (X,Z).

(3) If Y ⊂ Z; then (X,Z) ⊂ (X,Y ).

Lemma 1.3.7 (Malkowsky [33], Wilansky [61]) Let X and Y be sequence spaces, A

an infinite matrix and T a triangle. Then, we have the following facts:

(1) T ∈ (X,Y ) ⇐⇒ T (x) ∈ Y for all x ∈ X (note that: T (x) exists for all x ∈ w).

(2) If X is a BK space with a norm ∥ · ∥; then XT ia a BK space with the norm

∥ · ∥T defined by ∥x∥T = ∥T (x)∥ for all x ∈ XT .

(3) A ∈ (X,YT ) ⇐⇒ TA ∈ (X,Y ).
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Further, it seems to be quite natural, in view of the fact that matrix operators

between BK spaces are continuous, to find necessary and sufficient conditions for

the entries of an infinite matrix to define a linear operator between BK spaces which

means the characterization of matrix classes concerning sequence spaces. The following

familiar results can be found in the paper of Stieglitz and Tietz [58, pp. 2–9] and will

be needed to prove our main results in the next chapters. In the following results, we

will use the symbol µ to be any one of the spaces c0, c or ℓ∞, and K stands for the

collection of all non-empty finite subsets of positive integers.

Lemma 1.3.8 Let 1 ≤ p < ∞. Then, we have (c0, ℓp) = (c, ℓp) = (ℓ∞, ℓp), and

A ∈ (µ, ℓp) if and only if the following condition holds:

sup
K∈K

∞∑
n=1

∣∣∣∣∣∑
k∈K

ank

∣∣∣∣∣
p

< ∞ ,

where K stands for the collection of all non-empty finite subsets of positive integers.

Lemma 1.3.9 We have (c0, ℓ∞) = (c, ℓ∞) = (ℓ∞, ℓ∞), and A ∈ (µ, ℓ∞) if and only if

the following condition holds:

sup
n

∞∑
k=1

|ank| < ∞ . (1.3.1)

Lemma 1.3.10 We have the following:

(1) A ∈ (ℓ∞, c) if and only if (1.3.1) and the following conditions hold:

lim
n→∞

ank = ak exists for every k ≥ 1 , (1.3.2)

lim
n→∞

∞∑
k=1

|ank − ak| = 0 .

(2) A ∈ (c, c) if and only if (1.3.1), (1.3.2) and the following condition hold:

lim
n→∞

∞∑
k=1

ank = a exists .

(3) A ∈ (c0, c) if and only if (1.3.1) and (1.3.2) hold.
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Lemma 1.3.11 We have the following:

(1) A ∈ (ℓ∞, c0) if and only if the following condition holds:

lim
n→∞

∞∑
k=1

|ank| = 0.

(2) A ∈ (c, c0) if and only if (1.3.1) and the following conditions hold:

lim
n→∞

ank = 0 for every k ≥ 1, (1.3.3)

lim
n→∞

∞∑
k=1

ank = 0.

(3) A ∈ (c0, c0) if and only if (1.3.1) and (1.3.3) hold.

Lemma 1.3.12 We have the following:

(1) A ∈ (ℓ1, ℓ∞) if and only if the following condition holds:

sup
n, k

|ank| < ∞. (1.3.4)

(2) A ∈ (ℓ1, c) if and only if (1.3.2) and (1.3.4) hold.

(3) A ∈ (ℓ1, c0) if and only if (1.3.3) and (1.3.4) hold.

Lemma 1.3.13 Let 1 < p < ∞ and q = p/(p− 1). Then, we have the following:

(1) A ∈ (ℓp, ℓ∞) if and only if the following condition holds:

sup
n

∞∑
k=1

|ank|q < ∞. (1.3.5)

(2) A ∈ (ℓp, c) if and only if (1.3.2) and (1.3.5) hold.

(3) A ∈ (ℓp, c0) if and only if (1.3.3) and (1.3.5) hold.
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Lemma 1.3.14 We have the following:

(1) A ∈ (cs, c) if and only if (1.3.2) and the following condition hold:

sup
n

∞∑
k=1

|ank − an, k+1| < ∞. (1.3.6)

(2) A ∈ (bs, ℓ∞) if and only if both (1.3.6) and the following condition hold:

lim
k→∞

ank = 0 for every n ≥ 1. (1.3.7)
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Chapter 2

NEW λ-SEQUENCE SPACES



2 NEW λ-SEQUENCE SPACES

The approach constructing a new sequence space by means of the matrix domain of

a particular triangle has recently been employed by several authors in many research

papers (see for example [19, 28, 33, 40, 42, 50, 60, 66]). In the present chapter, we

study some additional properties of the well-known spaces bs, cs and cs0 of bounded,

convergent and null series, respectively. After that, we introduce the new λ-sequence

spaces bsλ, csλ and csλ0 of bounded, convergent and null series, respectively. Further,

we study some algebraic and topological properties of our new spaces. Finally, we

construct the Schauder basis for the spaces csλ and csλ0 with concluding their sepa-

rability. This chapter is divided into three sections, the first is devoted to study the

sequence spaces defined by series, the second is for introducing our new spaces with

study their properties and the last is to construct their Schauder bases. The materi-

als of this chapter are part of our research paper [48] which has been published in the

Albaydha Univ. J., and presented in the 2nd conference of Albaydha University on 2021.

2.1 Sequence Spaces Via Series

In this section, we study some additional properties of the famous spaces bs, cs

and cs0 of bounded, convergent and null series, respectively. These spaces have been

defined as the domains of the triangle σ, so-called the sum-matrix, in the spaces ℓ∞, c

and c0, respectively. That is bs = (ℓ∞)σ, cs = (c)σ and cs0 = (c0)σ which can be written

as bs = {x ∈ w : σ(x) ∈ ℓ∞}, cs = {x ∈ w : σ(x) ∈ c} and cs0 = {x ∈ w : σ(x) ∈ c0},

where σ(x) = (σn(x)) with σn(x) =
∑n

k=1 xk for all n ≥ 1. Further, since ℓ∞, c and c0
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are BK spaces with ∥ · ∥∞ and σ is a triangle; it follows that bs, cs and cs0 are BK

spaces with the norm ∥ · ∥s given by ∥x∥s = supn |
∑n

k=1 xk| (see (2) of Lemma 1.3.2).

Also, we may begin with proving the following results:

Lemma 2.1.1 The spaces bs, cs and cs0 are isometrically linear-isomorphic to the

spaces ℓ∞, c and c0, respectively. That is bs ∼= ℓ∞, cs ∼= c and cs0 ∼= c0.

Proof. Let µ be standing for any one of the spaces ℓ∞, c and c0, and let µ̄ be the

respective one of the spaces bs, cs and cs0. Then, it follows by definition that the

spaces µ̄ are the domains of the sum-matrix σ in the spaces µ, that is µ̄ = µσ and so

we have the linear operator σ : µ̄ → µ. Also, since σ is a triangle and so invertible

with σ−1 = ∆ [34]; we deduce that σ is a linear bijection preserving the norm, where

∥σ(x)∥∞ = ∥x∥s for all x ∈ µ̄. Hence, the spaces µ̄ are isometrically linear-isomorphic

to the spaces µ, that is µ̄ ∼= µ and this completes the proof. 2

Lemma 2.1.2 Suppose that ê1 = (1,−1, 0, 0, · · · ), ê2 = (0, 1,−1, 0, 0, · · · ), · · · etc.

Then, the sequence (ê1, ê2, ê3 · · · ) is a Schauder basis for the space cs0 and every x ∈ cs0

has the unique representation x =
∑∞

k=1 σk(x) êk. Also, the sequence (ê, ê1, ê2, ê3 · · · )

is a Schauder basis for the space cs and every x ∈ cs has the unique representation

x = Lê+
∑∞

k=1(σk(x)− L) êk, where ê = e1 and L = limn→∞ σn(x).

Proof. This result is immediate by Lemma 1.3.3, since the spaces µ̄ are isometrically

linear-isomorphic to the spaces µ (Lemma 2.1.1). 2

Lemma 2.1.3 The spaces cs0 and cs are separable while the space bs is not separable

and has no Schauder basis.

Proof. Since cs0 and cs are BK spaces and so Banach spaces having Schauder bases

(by Lemma 2.1.2); this result follows from (3) of Lemma 1.3.3. 2
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Moreover, the α-, β- and γ-duals of the spaces bs, cs and cs0 are given in Lemma

1.3.5 and some inclusion relations concerning these spaces can be found in Lemma

1.3.1. For example, we have the strict inclusions cs0 ⊂ cs ⊂ bs, ℓ1 ⊂ cs ⊂ c0 and

bs ⊂ ℓ∞. Furthermore, we prove the following result:

Lemma 2.1.4 We have the following:

(1) The inclusion c ∩ bs ⊂ c0 holds.

(2) The equality c ∩ bs = c0 ∩ bs holds.

(3) The inclusion cs ⊂ c0 ∩ bs strictly holds.

Proof. For (1), take any x ∈ c ∩ bs. Then x ∈ c as well as x ∈ bs and so σ(x) ∈ ℓ∞.

Also, since x ∈ c; the limit limk→∞ xk exists and we must have limk→∞ σk(x)/k =

limk→∞ xk by the regularity of the Cesàro matrix C1 of arithmetic mean [46, 54],

where C1(x) = (σk(x)/k) (see the 1st study in section 1.1.3, p.12). But σ(x) ∈ ℓ∞

(by assumption) and so limk→∞ σk(x)/k = 0 which implies that limk→∞ xk = 0 (as

limk→∞ xk = limk→∞ σk(x)/k). Thus x ∈ c0 and it follows that the inclusion c∩bs ⊂ c0

holds. To prove (2), we have c0 ⊂ c and so c0 ∩ bs ⊂ c ∩ bs. Also, for the converse

inclusion, it is clear that c ∩ bs ⊂ bs and we have c ∩ bs ⊂ c0 by part (1) which

together imply that c∩ bs ⊂ c0∩ bs. Therefore, we deduce the equality c∩ bs = c0∩ bs.

For the final part (3), it is obvious that the inclusion cs ⊂ c0 ∩ bs holds by Lemma

1.3.1. To show that this inclusion is strict, consider the sequence x = (xk) defined by

xk = (−1)n−1/n for (n2 − n)/2 < k ≤ (n2 + n)/2, where n is any positive integer, i.e.

x =
(
1,−1

2
,−1

2
,
1

3
,
1

3
,
1

3
,−1

4
,−1

4
,−1

4
,−1

4
, · · ·

)
.

Then, obviously x ∈ c0 and we obtain that

σ(x) =
(
1,

1

2
, 0,

1

3
,
2

3
, 1,

3

4
,
2

4
,
1

4
, 0, · · ·

)
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which can be written as follows

σk(x) =
1

2
+ (−1)n

(
2k − (n+ 1)2

2(n+ 1)

)
for

n(n+ 1)

2
≤ k ≤ (n+ 1)(n+ 2)

2
(n ≥ 1).

Thus, we deduce that −1/2 ≤ [2k− (n+ 1)2]/[2(n+ 1)] ≤ 1/2 whenever n(n+ 1)/2 ≤

k ≤ (n + 1)(n + 2)/2 and so 0 ≤ σk(x) ≤ 1 for all k ≥ 1 which means that σ(x) ∈ ℓ∞

and hence x ∈ c0∩ bs. But, it is obvious that σ(x) /∈ c (as σn(n+1)/2(x) = (1− (−1)n)/2

for all n) and so x /∈ cs. That is, there exists a null sequence whose a bounded sum

but not convergent. Therefore, the inclusion cs ⊂ c0 ∩ bs is strict. 2

Finally, we end this section with the following basic example:

Example 2.1.5 Consider the sequences x, y and z given by xk = ∆(k/(k + 1)2),

yk = k/(k + 1)! and zk = (−1)k−1 for all k ≥ 1. Then, it can easily be seen that

σ(x) = (n/(n+1)2) ∈ c0, σ(y) = (1−1/(n+1)!) ∈ c and σ(z) = ( (1−(−1)n)/2 ) ∈ ℓ∞.

Thus, we find that x ∈ cs0, y ∈ cs and z ∈ bs.

2.2 λ-Sequence Spaces

In this section, we present the idea of λ-sequence spaces and introduce the new

λ-sequence spaces bsλ, csλ and csλ0 of bounded, convergent and null series, respectively.

Also, we show that our new spaces are BK spaces and conclude their isomorphic

relations with the spaces ℓ∞, c and c0, and with the spaces bs, cs and cs0.

Throughout this study, we assume that λ = (λj)
∞
j=1 is a strictly increasing sequence

of positive reals tending to ∞. That is 0 < λ1 < λ2 < · · · and λj → ∞ as j → ∞.

Also, we define the λ-triangle Λ = [λnk]
∞
k,n=1 for every n, k ≥ 1 by

λnk =


λk − λk−1

λn

; (1 ≤ k ≤ n),

0 ; (k > n ≥ 1),
(2.2.1)
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where λ0 = 0. Then, for every x ∈ w, the Λ-transform of x is the sequence Λ(x) =

(Λn(x))
∞
n=1 given by

Λk(x) =
1

λk

k∑
j=1

(λj − λj−1)xj (k ≥ 1). (2.2.2)

The λ-sequence spaces cλ0 , cλ, ℓλ∞ and ℓλp (1 ≤ p < ∞) have been introduced by

Mursaleen and Noman [39, 41] as the matrix domains of Λ in the spaces c0, c, ℓ∞ and

ℓp, respectively. That is

cλ0 = (c0)Λ = {x ∈ w : Λ(x) ∈ c0},

cλ = (c)Λ = {x ∈ w : Λ(x) ∈ c},

ℓλ∞ = (ℓ∞)Λ = {x ∈ w : Λ(x) ∈ ℓ∞},

ℓλp = (ℓp)Λ = {x ∈ w : Λ(x) ∈ ℓp} (1 ≤ p < ∞).

Also, it has been shown that the spaces cλ0 , cλ and ℓλ∞ are BK spaces with the

norm ∥x∥Λ∞ = supk |Λk(x)| and the spaces ℓλp (1 ≤ p < ∞) are BK spaces with the

norm ∥x∥Λp = (
∑∞

k=1 |Λk(x)|p)1/p. Further, the following important results will be

used in the sequel which can be found in [39] and [41].

Lemma 2.2.1 We have the following:

(1) The matrix Λ is regular, that is limk→∞ Λk(x) = limk→∞ xk for every x ∈ c.

(2) The following equality satisfies for every x ∈ w:

xk − Λk−1(x) =
λk

λk − λk−1

[Λk(x)− Λk−1(x)] (k ≥ 1). (2.2.3)

Lemma 2.2.2 Let 1 ≤ p < ∞. Then, we have the following:

(1) The inclusions ℓλp ⊂ cλ0 ⊂ cλ ⊂ ℓλ∞ strictly hold.

(2) The inclusions c0 ⊂ cλ0 , c ⊂ cλ and ℓ∞ ⊂ ℓλ∞ hold.
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(3) The inclusion ℓp ⊂ ℓλp holds if and only if 1/λ ∈ ℓp, where 1/λ = (1/λj)
∞
j=1.

(4) The equalities ℓλp = ℓp, cλ0 = c0, cλ = c and ℓλ∞ = ℓ∞ hold if and only if λ/∆(λ) ∈ ℓ∞,

where λ/∆(λ) = (λj/∆(λj) )
∞
j=1.

We refer the reader to [39] and [41] for additional knowledge concerning the λ-

sequence spaces. Now, as a natural continuation of above work, we introduce, in the

next definition, the new λ-sequence spaces of bounded, convergent and null series.

Definition 2.2.3 The λ-sequence spaces bsλ, csλ and csλ0 are defined as the matrix

domains of the triangle Λ in the spaces bs, cs and cs0, respectively. That is

bsλ = (bs)Λ = {x ∈ w : Λ(x) ∈ bs},

csλ = (cs)Λ = {x ∈ w : Λ(x) ∈ cs},

csλ0 = (cs0)Λ = {x ∈ w : Λ(x) ∈ cs0}.

So that, our contribution is the following new spaces:

bsλ =

{
x ∈ w : sup

n

∣∣∣∣∣
n∑

k=1

Λk(x)

∣∣∣∣∣ < ∞

}
,

csλ =

{
x ∈ w : lim

n→∞

n∑
k=1

Λk(x) exists

}
,

csλ0 =

{
x ∈ w : lim

n→∞

n∑
k=1

Λk(x) = 0

}
.

Besides, we define the triangle Λ̂ = [λ̂nk]
∞
k,n=1 for every n, k ≥ 1 by

λ̂nk =

 (λk − λk−1)
n∑

j=k

1

λj

; (1 ≤ k ≤ n),

0 ; (k > n ≥ 1).

(2.2.4)

Then, for every sequence x ∈ w, we have

Λ̂n(x) =
n∑

k=1

( n∑
j=k

1

λj

)
(λk − λk−1)xk (n ≥ 1). (2.2.5)
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Thus, it can easily be seen that Λ̂(x) = σ( Λ(x) ) for all x ∈ w which can be written as

Λ̂n(x) = σn(Λ(x)) =
n∑

k=1

Λk(x) (n ≥ 1). (2.2.6)

This means that Λ̂ = σΛ and it follows that bsλ, csλ and csλ0 are sequence spaces which

can be redefined as follows:

Definition 2.2.4 The λ-sequence spaces bsλ, csλ and csλ0 are defined as the matrix

domains of the triangle Λ̂ in the spaces ℓ∞, c and c0, respectively. That is

bsλ = (ℓ∞)Λ̂ , csλ = (c)Λ̂ and csλ0 = (c0)Λ̂. (2.2.7)

Thus, from the definition, it follows that

bsλ = {x ∈ w : Λ̂(x) ∈ ℓ∞},

csλ = {x ∈ w : Λ̂(x) ∈ c},

csλ0 = {x ∈ w : Λ̂(x) ∈ c0}.

Now, we may begin with the following results which are essential for our study.

Theorem 2.2.5 The λ-sequence spaces bsλ, csλ and csλ0 are BK spaces with the norm

∥ · ∥sλ defined, for every sequence x in these spaces, by

∥x∥sλ = ∥Λ̂(x)∥∞ = sup
n

∣∣∣Λ̂n(x)
∣∣∣ = sup

n

∣∣∣∣∣
n∑

k=1

Λk(x)

∣∣∣∣∣ .
Proof. Since ℓ∞, c and c0 are BK spaces with their natural norm ∥ · ∥∞ by (1) of

Lemma 1.3.2 and Λ̂ is a triangle; this result is immediate by (2.2.7) with help (2) of

Lemma 1.3.7 (this result can also be proved by using (2) of Lemma 1.3.2 and (2) of

Lemma 1.3.7 with help of Definition 2.2.3). 2

Theorem 2.2.6 The λ-sequence spaces bsλ, csλ and csλ0 are isometrically linear-

isomorphic to the spaces ℓ∞, c and c0, respectively. That is bsλ ∼= ℓ∞ , csλ ∼= c,

and csλ0
∼= c0.
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Proof. To prove this result, we will show that there exists a linear bijection between

the spaces bsλ and ℓ∞ which preserves the norm. For this, we can use (2.2.7) from

Definition 2.2.4 of the space bsλ to define the matrix operator Λ̂ : bsλ → ℓ∞ by

x 7→ Λ̂(x) for all x ∈ bsλ, which is a linear operator. Then, it is obvious that Λ̂(x) = 0

implies x = 0, and so Λ̂ is injective. Also, let y ∈ ℓ∞ be given and define a sequence

x = (xj) in terms of the sequence y by

xj =
∆(λj ∆(yj) )

∆(λj)
=

λj ∆(yj)− λj−1∆(yj−1)

λj − λj−1

(j ≥ 1), (2.2.8)

where y0 = λ0 = 0. Then, it follows by (2.2.2) that

Λk(x) =
1

λk

k∑
j=1

[λj ∆(yj)− λj−1∆(yj−1)] = ∆(yk) (k ≥ 1).

Thus, by using (2.2.6), we find that Λ̂n(x) =
∑n

k=1 ∆(yk) = yn for all n, which means

that Λ̂(x) = y, but y ∈ ℓ∞ and so Λ̂(x) ∈ ℓ∞. Thus x ∈ bsλ and this means the

existence of x ∈ bsλ such that Λ̂(x) = y and hence Λ̂ is surjective. Further, it is clear

by Theorem 2.2.5 that Λ̂ is norm preserving, since ∥Λ̂(x)∥∞ = ∥x∥sλ for every x ∈ bsλ.

Therefore, the operator Λ̂ : bsλ → ℓ∞ is a linear bijection preserving the norm. That

is, our Λ̂ is an isometry isomorphism between bsλ and ℓ∞ which means that bsλ ∼= ℓ∞.

Similarly, it can be shown that csλ ∼= c and csλ0
∼= c0. 2

Corollary 2.2.7 The λ-sequence spaces bsλ, csλ and csλ0 are isometrically linear-

isomorphic to the spaces bs, cs and cs0, respectively. That is bsλ ∼= bs , csλ ∼= cs, and

csλ0
∼= cs0.

Proof. It is immediate by combining Lemma 2.1.1 with Theorem 2.2.6. 2

Remark 2.2.8 We have already shown in the proof of Theorem 2.2.6 that the matrix

Λ̂ defines a linear operator from any of the spaces bsλ, csλ or csλ0 into the respective
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one of the spaces ℓ∞, c or c0, which is an isometry isomorphism, and this implies the

continuity of the matrix operator Λ̂ which will be used in the sequel.

At the end of this section, we give an example to show that our new spaces bsλ,

csλ and csλ0 are totally different from the spaces ℓ∞, c, c0, bs, cs and cs0. But before

that, and for simplicity in notations, we will use our terminologies as in the proof of

Lemma 2.1.1. That is, we will use the symbol µ to denote any of the spaces ℓ∞, c or

c0 and so µ̄ stands for the respective one of the spaces bs, cs or cs0 while µ̄λ is the

corresponding one of the spaces bsλ, csλ or csλ0 , respectively.

Example 2.2.9 In this example, our aim is to show that our spaces µ̄λ are different

from all the sequence spaces µ and µ̄. For this, consider the sequence λ = (λk) defined

by λk = k and so ∆(λk) = 1 for all k ≥ 1. Then, for any x ∈ w, we have Λk(x) =

(1/k)
∑k

j=1 xj = σk(x)/k and Λ̂n(x) =
∑n

k=1 Λk(x) for all k, n ≥ 1. Thus, our spaces

can be defined as µ̄λ = {x ∈ w : ( σk(x)/k ) ∈ µ̄} = {x ∈ w : (
∑n

k=1 σk(x)/k ) ∈ µ}.

Also, define the unbounded sequence z = (zk) by z1 = 1 and for k > 1 by

zk =

k
√

2/(k + 1) + (k − 1)
√

2/(k − 1) ; (k is odd),

−(2k − 1)
√

2/k ; (k is even).

Then, we have z /∈ ℓ∞ and so z /∈ µ which also implies that z /∈ bs and hence z /∈ µ̄

which can independently be obtained from its sum sequence σ(z), where

σk(z) =

k
√

2/(k + 1) ; (k is odd),

−k
√

2/k ; (k is even).

Further, by using (2.2.2) and (2.2.6) we respectively obtain that

Λk(z) =


√

2/(k + 1) ; (k is odd),

−
√

2/k ; (k is even),

Λ̂n(z) =


√
2/(n+ 1) ; (n is odd),

0 ; (n is even).
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This implies that Λ̂(z) ∈ c0 and so z ∈ csλ0 which leads us to z ∈ µ̄λ. Hence, we

have shown that z ∈ µ̄λ while z /∈ µ as well as z /∈ µ̄. Therefore, we deduce that

µ̄λ ̸⊂ µ and µ̄λ ̸⊂ µ̄. On other side, consider the sequence z′ = (z′k) defined by

z′k = ∆( 1/ log(1 + k) ) for all k ≥ 1 with noting that z′1 = 1/ log 2. Then, we get

σ(z′) = ( 1/ log(1 + k) ) ∈ c0 and so z′ ∈ cs0 which implies both z′ ∈ µ and z′ ∈ µ̄.

Besides, we find that Λ(z′) = ( 1/(k log(1 + k)) ) and so Λ̂n(z
′) =

∑n
k=1 1/(k log(1+k))

which diverges to ∞ as n → ∞ and this means that z′ /∈ bsλ and so z′ /∈ µ̄λ. Hence, we

have shown that z′ /∈ µ̄λ while z′ ∈ µ and z′ ∈ µ̄. Therefore, we deduce that µ ̸⊂ µ̄λ as

well as µ̄ ̸⊂ µ̄λ. Consequently, we conclude that all the spaces µ̄λ are totally different

from any of the spaces µ and any of the spaces µ̄, that is µ̄λ ̸= ℓ∞, c, c0, bs, cs or cs0.

2.3 Schauder Basis

In the last section, we construct two sequences which form the Schauder bases for

the λ-sequence spaces csλ0 and csλ, and we conclude their separability while the space

bsλ is not separable and has no Schauder basis.

At the beginning, the Schauder bases for the spaces c0 and c can be found in

Lemma 1.3.3 and for the spaces cs0 and cs are given in Lemma 2.1.2. Thus, these

spaces are separable while the spaces ℓ∞ and bs are not separable and so they have no

Schauder bases.

Now, we may begin this section with constructing the Schauder basis for the

sequence space csλ0 of λ-null series and we will deduce the unique representation of

every x ∈ csλ0 .
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Theorem 2.3.1 For each k ≥ 1, define the sequence eλk = (eλnk)
∞
n=1 for every n ≥ 1 by

eλnk =



λk

λk − λk−1

; (n = k),

−
(
λk+1 + λk

λk+1 − λk

)
; (n = k + 1),

λk+1

λk+2 − λk+1

; (n = k + 2),

0 ; (otherwise).

Then, the sequence
(
eλk
)∞
k=1

is a Schauder basis for the space csλ0 and every x ∈ csλ0 has

a unique representation of the form

x =
∞∑
k=1

Λ̂k(x) e
λ
k . (2.3.1)

Proof. For each k ≥ 1, it can easily be seen that

eλk =
λk

λk − λk−1

ek −
(
λk+1 + λk

λk+1 − λk

)
ek+1 +

λk+1

λk+2 − λk+1

ek+2 ·

Thus, by using (2.2.2), we find that Λ(eλk) = ek − ek+1 and so Λ̂(eλk) = ek. This implies

that Λ̂(eλk) ∈ c0 and hence eλk ∈ csλ0 for all k ≥ 1 which means that
(
eλk
)∞
k=1

is a sequence

in csλ0 . Further, let x ∈ csλ0 be given and for every positive integer m, we put

x(m) =
m∑
k=1

Λ̂k(x) e
λ
k .

Then, by operating Λ̂ on both sides, we find that

Λ̂(x(m)) =
m∑
k=1

Λ̂k(x) Λ̂(e
λ
k) =

m∑
k=1

Λ̂k(x) ek

and hence

Λ̂n(x− x(m)) =

 0 ; (1 ≤ n ≤ m),

Λ̂n(x) ; (n > m).

Now, since Λ̂(x) ∈ c0; for any positive real ϵ > 0, there is a positive integer m0 such

that |Λ̂m(x)| < ϵ for every m ≥ m0. Thus, for any m ≥ m0, we have

∥∥x− x(m)
∥∥
sλ

= sup
n>m

∣∣∣Λ̂n(x)
∣∣∣ ≤ sup

n>m0

∣∣∣Λ̂n(x)
∣∣∣ ≤ ϵ .
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We therefore deduce that limm→∞ ∥x− x(m)∥sλ = 0 which means that x is represented

as in (2.3.1). Thus, it is remaining to show the uniqueness of the representation (2.3.1)

of x. For this, suppose that x =
∑∞

k=1 αk e
λ
k . Then, we have to show that αn = Λ̂n(x)

for all n, which is immediate by operating Λ̂n on both sides of (2.3.1) for each n ≥ 1,

where the continuity of Λ̂ (as we have seen in Remark 2.2.8) allows us to obtain that

Λ̂n(x) =
∞∑
k=1

αk Λ̂n(e
λ
k) =

∞∑
k=1

αk δnk = αn

for all n ≥ 1 and hence the representation (2.3.1) of x is unique. 2

Further, we have the following result constructing Schauder basis for the sequence

space csλ of λ-convergent series.

Theorem 2.3.2 The sequence
(
eλ, eλ1 , e

λ
2 , · · ·

)
is a Schauder basis for the space csλ

and every x ∈ csλ has a unique representation of the form

x = Leλ +
∞∑
k=1

(
Λ̂k(x)− L

)
eλk , (2.3.2)

where L = limn→∞ Λ̂n(x), the sequence
(
eλk
)∞
k=1

is as in Theorem 2.3.1 and eλ is the

following sequence:

eλ = e1 −
(

λ1

λ2 − λ1

)
e2 =

(
1,− λ1

λ2 − λ1

, 0, 0, 0, · · ·
)
.

Proof. It can easily be shown that Λ(eλ) = e1 and so Λ̂(eλ) = e ∈ c which means that

eλ ∈ csλ. This together with eλk ∈ csλ0 ⊂ csλ imply that
(
eλ, eλ1 , e

λ
2 , · · ·

)
is a sequence

in csλ. Also, let x ∈ csλ be given. Then Λ̂(x) ∈ c which yields the convergence of the

sequence Λ̂(x) to a unique limit, say L = limn→∞ Λ̂n(x). Thus, by taking y = x−Leλ,

we get Λ̂(y) = Λ̂(x)−Le ∈ c0 and so y ∈ csλ0 . Hence, it follows by Theorem 2.3.1 that

y can uniquely be represented in the following form:

y =
∞∑
k=1

Λ̂k(y) e
λ
k =

∞∑
k=1

(
Λ̂k(x)− L Λ̂k(e

λ)
)
eλk =

∞∑
k=1

(
Λ̂k(x)− L

)
eλk .
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Consequently, our x can also be uniquely written as

x = Leλ + y = Leλ +
∞∑
k=1

(
Λ̂k(x)− L

)
eλk

which proves the unique representation (2.3.2) of x and this step ends the proof. 2

Moreover, the following result concerning the topological property of separability.

Corollary 2.3.3 We have the following facts:

(1) The spaces csλ0 and csλ are separable BK spaces.

(2) The space bsλ is a non-separable BK space and has no a Schauder basis.

Proof. Since cs0 and cs are BK spaces and so Banach spaces having Schauder bases;

this result is immediate by (3) of Lemma 1.3.3. 2

Finally, we conclude this chapter with the following example on the Schauder basis

for the space csλ0 .

Example 2.3.4 By returning back to Example 2.2.9, we have studied the particular

case of the sequence λ = (λk) given by λk = k for all k and obtained that

csλ0 =

{
x ∈ w :

(
1

k
σk(x)

)
∈ cs0

}
=

{
x ∈ w :

(∑n

k=1

σk(x)

k

)
∈ c0

}
.

Also, we have shown that z ∈ csλ0 , where z = (zk) is the sequence given by z1 = 1 and

zk =

k
√

2/(k + 1) + (k − 1)
√

2/(k − 1) ; (k is odd),

−(2k − 1)
√

2/k ; (k is even)

for k > 1, where Λ̂(z) ∈ c0 is given by

Λ̂n(z) =


√

2/(n+ 1) ; (n is odd),

0 ; (n is even).
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On other hand, it follows by Theorem 2.3.1 that the sequence
(
eλ1 , e

λ
2 , e

λ
3 , · · ·

)
is the

Schauder basis for the space csλ0 , where

eλ1 = (1,−3, 2, 0, 0, 0, · · · ) , eλ2 = (0, 2,−5, 3, 0, 0, · · · ) , eλ3 = (0, 0, 3,−7, 4, 0, · · · ) , · · ·

Thus, by applying Theorem 2.3.1 to z, the sequence z has the unique representation

z =
∞∑
k=1

Λ̂2k−1(z) e
λ
2k−1 =

∞∑
k=1

1√
k
eλ2k−1 .
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Chapter 3

INCLUSION RELATIONS



3 INCLUSION RELATIONS

In the present chapter, we establish some interesting inclusion relations between our

new λ-sequence spaces and derive other inclusion relations between our spaces and the

classical sequence spaces. This chapter is divided into three sections, the first is devoted

to derive some basic inclusion relation, the second is for proving some preliminary

results to be used in deducing the main results in the last section. The materials

of this chapter are part of our research paper [48] which has been published in the

Albaydha Univ. J., and presented in the 2nd conference of Albaydha University on

2021.

3.1 Basic Results

In this section, we establish some basic inclusion relations concerning with the new

λ-sequence spaces bsλ, csλ and csλ0 .

Lemma 3.1.1 We have the following facts:

(1) The inclusions csλ0 ⊂ csλ ⊂ bsλ strictly hold.

(2) The inclusions ℓλ1 ⊂ csλ ⊂ cλ0 and ℓλ1 ⊂ bsλ ⊂ ℓλ∞ strictly hold.

(3) The inclusion csλ0 ⊂ cλ0 strictly holds.

Proof. For (1), the inclusions csλ0 ⊂ csλ ⊂ bsλ are obviously satisfied (by the well-

known inclusions cs0 ⊂ cs ⊂ bs, see Lemma 1.3.1). To show that these inclusions are

strict, define a sequence x = (xj) by

xj =
2−j λj − 2−(j−1) λj−1

λj − λj−1

(j ≥ 1).

38



Then, by using (2.2.2), we find that Λk(x) = 2−k for every k ≥ 1 and so Λ̂(x) =

(1 − 2−n) ∈ c \ c0. This means that x ∈ csλ \ csλ0 and so the inclusion csλ0 ⊂ csλ is

strict. Also, define the sequence y = (yj) by

yj = (−1)j
(λj + λj−1

λj − λj−1

)
(j ≥ 1).

Then, for every k ≥ 1, we find that

Λk(y) =
1

λk

k∑
j=1

(−1)j(λj + λj−1) = (−1)k (k ≥ 1)

and hence Λ̂n(y) = −1 when n is odd or Λ̂n(y) = 0 when n is even. Thus, we deduce

that Λ̂(y) ∈ ℓ∞ \ c which means that y ∈ bsλ \ csλ and hence the inclusion csλ ⊂ bsλ

is also strict, and part (1) has been proved. To prove part (2), let x ∈ ℓλ1 . Then,

the series
∑∞

k=1 Λk(x) is absolutely convergent and so it converges which means that

x ∈ csλ and hence the inclusion ℓλ1 ⊂ csλ holds which implies the inclusion ℓλ1 ⊂ bsλ.

Also, if x ∈ csλ; then it follows, from the convergence of the series
∑∞

k=1 Λk(x), that

Λ(x) ∈ c0 and hence x ∈ cλ0 which means that the inclusion csλ ⊂ cλ0 holds. Similarly,

we can show that bsλ ⊂ ℓλ∞ holds. To show that these inclusions are strict, define the

sequence x = (xj) by

xj = (−1)j
(λj/(j + 1) + (λj−1/j)

λj − λj−1

)
(j ≥ 1).

Then, it can easily be seen that Λ(x) = ( (−1)k/(k + 1) ) ∈ cs \ ℓ1 and so x ∈ csλ \ ℓλ1

which means that the inclusion ℓλ1 ⊂ csλ is strict, and so is the inclusion ℓλ1 ⊂ bsλ.

Further, define the sequence y = (yj) by

yj =
∆(λj/(j + 1) )

λj − λj−1

(j ≥ 1).

Then, it is easy to show that Λ(y) = ( 1/(k+1) ) ∈ c0\cs which means that y ∈ cλ0 \csλ

and so the inclusion csλ ⊂ cλ0 is strict. Also, it is clear that Λ(e) = e ∈ ℓ∞ \ bs which

39



implies that e ∈ ℓλ∞ \ bsλ and hence the inclusion bsλ ⊂ ℓλ∞ is also strict which ends the

proof of part(2). Finally, part (3) is clear by combining parts (1) and (2). 2

Lemma 3.1.2 We have the following facts:

(1) If 1/λ ∈ ℓ1 ; then the inclusion ℓ1 ⊂ csλ strictly holds, where 1/λ = (1/λj)
∞
j=1.

(2) The space ℓ1 cannot be included in csλ0 .

Proof. For (1), suppose 1/λ ∈ ℓ1. Then, the inclusion ℓ1 ⊂ ℓλ1 holds by (3) of Lemma

2.2.2. Thus, the inclusion ℓ1 ⊂ csλ is strict by (2) of above Lemma. For (2), consider

the sequence e1 = (1, 0, 0, · · · ). Then, by (2.2.2), we get that Λk(e1) = λ1/λk for all

k ≥ 1 and so Λ̂n(e1) = λ1 σn(1/λ) ≥ 1 for all n (as λk > 0 for all k). Thus Λ̂(e1) /∈ c0

which means that e1 /∈ csλ0 while e1 ∈ ℓ1 and hence ℓ1 ̸⊂ csλ0 . This ends the proof. 2

Remark 3.1.3 As in part (1) of Lemma 3.1.2, we will use the convention 1/λ =

(1/λj)
∞
j=1. Also, since λ is a sequence of positive reals; we deduce that 1/λ /∈ cs0, but

its sum sequence σ(1/λ) is increasing whose positive terms and this leads us to the

equivalences: 1/λ ∈ ℓ1 ⇐⇒ 1/λ ∈ cs ⇐⇒ 1/λ ∈ bs.

Lemma 3.1.4 We have the following:

(1) The inclusion cλ ∩ bsλ ⊂ cλ0 holds.

(2) The equality cλ ∩ bsλ = cλ0 ∩ bsλ holds.

(3) The inclusion csλ ⊂ cλ0 ∩ bsλ strictly holds.

Proof. This result is immediate by Lemma 2.1.4. To see that, take any x ∈ cλ ∩ bsλ.

Then x ∈ cλ as well as x ∈ bsλ. Thus Λ(x) ∈ c and Λ(x) ∈ bs. This implies that

Λ(x) ∈ c ∩ bs and so Λ(x) ∈ c0 (as c ∩ bs ⊂ c0 by (1) of Lemma 2.1.4). Thus

x ∈ cλ0 which proves (1). Similarly (2) is obtained from (2) of Lemma 2.1.4. Also, the
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inclusion csλ ⊂ cλ0 ∩ bsλ is immediate by (1) and (2) of Lemma 3.1.1. To show that this

inclusion is strict, there must exist a sequence z ∈ c0 ∩ bs such that z /∈ cs (as we have

seen in proving (3) of Lemma 2.1.4, where cs ⊂ c0 ∩ bs is strict). This implies that

σ(z) ∈ c0(∆)∩ ℓ∞ while σ(z) /∈ c. Now, let y = σ(z). Then y ∈ c0(∆)∩ ℓ∞ while y /∈ c.

Also, define a sequence x in terms of y by using (2.2.8), that is x = ∆(λ∆(y) )/∆(λ).

Then, as we have already shown in the proof of Theorem 2.2.6, we can show that

Λ(x) = ∆(y) = z ∈ c0 as well as Λ̂(x) = y = σ(z) ∈ ℓ∞ \ c. Thus, we deduce that

x ∈ cλ0 and x ∈ bsλ \ csλ, that is x ∈ cλ0 ∩ bsλ while x /∈ csλ and hence the inclusion

csλ ⊂ cλ0 ∩ bsλ is strict. This completes the proof. 2

3.2 Preliminary Results

In this section, we prove some preliminaries which will be used to prove our main

results in the next section and for this purpose, we are in need to quoting some addi-

tional conventions and terminologies.

In what follows and for simplicity in notations, we define the following two positive

real terms for every positive integer n

snk = λk

n∑
j=k

1

λj

and tnk = ∆(λk)
n∑

j=k

1

λj

, (1 ≤ k ≤ n). (3.2.1)

Further, if 1/λ ∈ ℓ1; then the limits snk → sk and tnk → tk (as n → ∞) exist for each

k ≥ 1. Thus, we can define the following three positive real sequences s = (sk), t = (tk)

and u = (uk) by

sk = λk

∞∑
j=k

1

λj

, tk = ∆(λk)
∞∑
j=k

1

λj

and uk =
λk

λk − λk−1

, (k ≥ 1). (3.2.2)

Moreover, it can easily be deriving the following equalities:

sk = tk uk (k ≥ 1) and snk = tnk uk (1 ≤ k ≤ n), (3.2.3)
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tk = 1 +∆(sk) (k > 1) and tnk = 1 +∆(snk) (1 < k ≤ n), (3.2.4)

where the difference is taken over k, that is ∆(snk) = snk − snk−1 for every k ≤ n.

Lemma 3.2.1 Let 1/λ ∈ ℓ1 and assume that ∆(u) ∈ c. Then, there must exist a

positive integer k0 satisfying all the following:

(1) 1 < uk < k for all k > k0 and so 0 ≤ limk→∞ ∆(uk) < 1.

(2) There is a positive real δ < 1/2 such that −δ < ∆(uk) < 1− δ for all k > k0.

(3) The difference sequence (∆(λk) )
∞
k=k0

is strictly increasing to ∞.

Proof. Suppose that 1/λ ∈ ℓ1 and ∆(u) ∈ c which means that limk→∞∆(uk) exists.

Then limk→∞ uk/k exists (due to the equality between these two limits [29, 30]). Thus

(uk/k) ∈ c ⊂ ℓ∞. Also, we claim that there is a positive integer k1 such that uk/k < 1

for all k > k1 or uk+1/(k + 1) < 1 for all k ≥ k1 which can equivalently be written

as λk+1/(λk+1 − λk) < k + 1 for all k ≥ k1. Otherwise, suppose on contrary that the

sequence λ = (λk) has a subsequence (λkr)
∞
r=1 such that λkr+1/(λkr+1 − λkr) ≥ kr+1 ≥

r+1 for all r ≥ 1. Then, it follows that λkr+1 ≤ λkr ((r+1)/r) and so λkr+1 ≤ λk1 (r+1)

for all r ≥ 1. Thus, we deduce that 1/(r + 1) ≤ λk1/λkr+1 for all r ≥ 1 and so

( 1/λkr+1 ) /∈ ℓ1 which contradicts with our hypothesis (1/λ ∈ ℓ1). Hence, our claim is

true (as uk+1 > 1 for all k). Further, since limk→∞∆(uk) = limk→∞ uk/k ; we find that

0 ≤ limk→∞∆(uk) ≤ 1. Moreover, it can easily be shown that limk→∞∆(uk) ̸= 1. For,

if limk→∞ ∆(uk) = 1; we can similarly get λk ≤ ak for some positive real a > 0 which is

a contradiction with 1/λ ∈ ℓ1. Therefore, we conclude that 0 ≤ limk→∞∆(uk) < 1. To

prove (2), assume that a = limk→∞ ∆(uk), where 0 ≤ a < 1. Then, for every positive

real ϵ > 0, there is a positive integer k′ = k′(ϵ) such that |∆(uk+1) − a| < ϵ and so

a− ϵ < ∆(uk+1) < a+ ϵ for all k ≥ k′. Now, choose a positive real δ < 1/2 such that
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(1−a)/4 < δ < (1−a)/2 and so δ < (1−a)/2 < 2δ. Then, by taking ϵ = (1−a)/2− δ

with its k2 = k′(ϵ), we get 0 < ϵ < 1/2 and find that a+ ϵ = (1+ a)/2− δ < 1− δ and

a−ϵ ≥ −ϵ = δ−(1−a)/2 > δ−2δ = −δ. Hence, we deduce that −δ < ∆(uk+1) < 1−δ

for all k ≥ k2, that is −δ < ∆(uk) < 1−δ for all k > k2. To prove (3), we obtain from

(2) that ∆(uk+1) < 1 and so 1+λk ∆( 1/∆(λk+1) ) < 1 for all k ≥ k2. This implies that

∆(λk+1) > ∆(λk) for all k ≥ k2. Thus, the sequence (∆(λk) )
∞
k=k2

is strictly increasing

and cannot be bounded (as 1/λ ∈ ℓ1) but must tend to ∞ which proves (3). Finally,

by taking k0 = max{k1, k2}, we get the common integer k0 in parts (1), (2) and (3). 2

Lemma 3.2.2 Let 1/λ ∈ ℓ1 and assume that limk→∞∆(uk) = a (0 ≤ a < 1). Then,

we have limk→∞ tk = 1/(1− a) and limk→∞∆(sk) = a/(1− a).

Proof. Suppose that limk→∞ ∆(uk) = a, where 0 ≤ a < 1 by (1) of Lemma 3.2.1.

Then, for every positive real ϵ > 0, there is a positive integer k′ such that |∆(uk+1)−a| <

ϵ and so |1 + λk∆( 1/∆(λk+1) )− a| < ϵ for all k ≥ k′. Thus, it follows that∣∣∣∣ 1− a

λk

−
(

1

∆(λk)
− 1

∆(λk+1)

)∣∣∣∣ < ϵ

λk

for all k ≥ k′ and by taking the sum of both sides from k = n to ∞ and noting that

∆(λk) → ∞ as k → ∞ by (3) of Lemma 3.2.1, we get∣∣∣∣∣(1− a)
∞∑
k=n

1

λk

− 1

∆(λn)

∣∣∣∣∣ ≤
∞∑
k=n

∣∣∣∣1− a

λk

−
(

1

∆(λk)
− 1

∆(λk+1)

)∣∣∣∣ ≤ ϵ
∞∑
k=n

1

λk

·

Dividing both sides by the positive number
∑∞

k=n 1/λk (as 1/λ ∈ ℓ1 and λk > 0 for all

k); we obtain that |(1 − a) − 1/tn| ≤ ϵ for all n ≥ k′, and since ϵ was arbitrary; we

deduce that 1/tn → 1− a or tn → 1/(1− a) as n → ∞. The second limit is immediate

by (3.2.4) and this completes the proof. 2

Lemma 3.2.3 Let 1/λ ∈ ℓ1 and suppose that t ∈ c. Then, all the following are true:
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(1) limk→∞ tk ≥ 1 and ∆(s) ∈ c such that limk→∞∆(sk) ≥ 0 .

(2) If limk→∞ tk = b; then limk→∞∆(uk) = (b− 1)/b and limk→∞ ∆(sk) = b− 1.

(3) There exists a positive integer k0 such that the difference sequence (∆(λk) )
∞
k=k0

is strictly increasing to ∞.

Proof. Suppose that 1/λ ∈ ℓ1 and t ∈ c. Then, it follows by (3.2.4) that ∆(s) ∈

c and so limk→∞∆(sk) = limk→∞ sk/k ≥ 0 (since sk > 0 for all k). Again, by

(3.2.4) we get limk→∞ tk ≥ 1 which is (1). To prove (2), we first show that t ∈ c

implies ∆(u) ∈ c. For this, it follows from t ∈ c that ∆(s) ∈ c and ∆(t) ∈ c

such that limk→∞∆(tk) = limk→∞ tk/k. Thus, from (3.2.3), we find that ∆(sk) =

∆(tkuk) = tk∆(uk)+uk−1∆(tk) which implies that limk→∞ ∆(sk) = limk→∞ tk(∆(uk)+

uk−1/k ) exists. Thus (∆(uk) + uk−1/k ) ∈ c. On other side, we have limk→∞ ∆(sk) =

limk→∞∆(tkuk) = limk→∞(tkuk)/k = limk→∞ tk(uk/k). Hence (uk/k) ∈ c, and since

(k/(k+1)) ∈ c; we find that (uk−1/k) ∈ c. Therefore, we deduce that ∆(u) = (∆(uk)) =

(∆(uk) + uk−1/k)− (uk−1/k) ∈ c. Now, if limk→∞ tk = b; then by Lemma 3.2.2 we get

limk→∞∆(uk) = (b− 1)/b and the other limit is trivial by (3.2.4). Finally, part (3) is

now immediate by (3) of Lemma 3.2.1 because ∆(u) ∈ c. This ends the proof. 2

Lemma 3.2.4 Suppose that 1/λ ∈ ℓ1. Then, we have the following equivalences:

(1) ∆(u) ∈ c if and only if t ∈ c.

(2) ∆(u) ∈ bv1 if and only if t ∈ bv1.

(3) supn

∑n
k=1 |∆(tnk)| < ∞ if and only if ∆(u) ∈ bv1.

Proof. Suppose that 1/λ ∈ ℓ1. Then, the equivalence in part (1) can be obtained by

combining Lemma 3.2.2 and (2) of Lemma 3.2.3. To prove (2), let us first note that
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bv1 ⊂ c by Lemma 1.3.1. Thus, if ∆(u) ∈ bv or t ∈ bv; then ∆(u) ∈ c as well as

t ∈ c. Hence, in both direction of current equivalence, we have ∆(u) ∈ c and t ∈ c.

Therefore, it follows by (2) of Lemma 3.2.1 that there are δ > 0 (real) and k0 ≥ 1

(integer) such that δ < 1−∆(uk) < 1 + δ for all k > k0. Thus ( 1−∆(uk+1) )
∞
k=k0

is a

convergent sequence of positive reals with non-zero limit, that is ( 1−∆(uk+1) ) ∈ c\c0.

Also, it is obvious that t is a convergent sequence of positive reals with non-zero limit,

that is t ∈ c \ c0. Further, it follows by Lemma 3.2.2 and (2) of Lemma 3.2.3 that

limk→∞ tk(1−∆(uk+1)) = 1. Hence, if ∆(u) ∈ bv1 or t ∈ bv1; then ( tk(1−∆(uk+1)) ) ∈

bv1 and so (∆[tk(1−∆(uk+1))] ) ∈ ℓ1. Therefore, we obtain that

(∆[tk(1−∆(uk+1))] ) =
(
tk∆(1−∆(uk+1)) + (1−∆(uk))∆(tk)

)
∈ ℓ1 ·

Now, if t ∈ bv1; then ∆(t) ∈ ℓ1 and so ( (1 − ∆(uk))∆(tk) ) ∈ ℓ1 which implies that

( tk∆(1 − ∆(uk+1)) ) ∈ ℓ1 and hence (∆(1 − ∆(uk+1)) ) ∈ ℓ1 (as t ∈ c \ c0) and

this means that (1 − ∆(uk+1)) ∈ bv1 and so ∆(u) ∈ bv1. Similarly, if ∆(u) ∈ bv1;

then we get (1 − ∆(uk+1)) ∈ bv1 and so (∆(1 − ∆(uk+1)) ) ∈ ℓ1 which implies that

( tk∆(1 − ∆(uk+1)) ) ∈ ℓ1 and hence ( (1 − ∆(uk))∆(tk) ) ∈ ℓ1. Thus (∆(tk) ) ∈ ℓ1

(as (1 − ∆(uk)) ∈ c \ c0), that is ∆(t) ∈ ℓ1 and so t ∈ bv1. Finally, to prove (3), let

us first note that t ∈ c in both direction of current equivalence (as we have already

shown in proving (2)) and hence there is an integer k0 ≥ 1 such that (∆(λk))
∞
k=k0

is

strictly increasing to ∞ by (3) of Lemma 3.2.1 (or Lemma 3.2.3). Now, let n ≥ 1.

Then, for every k ≤ n, we have tk − tnk = ( tn+1/∆(λn+1) )∆(λk) and so ∆(tk − tnk) =

( tn+1/∆(λn+1) ) (∆(λk)−∆(λk−1) ), where t0 = tn0 = 0. Thus, it follows that

∣∣∣ |∆(tk)| − |∆(tnk)|
∣∣∣ ≤ |∆(tk)−∆(tnk)| =

tn+1

∆(λn+1)
|∆(λk)−∆(λk−1)|
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and by taking the summation from k = 1 to n (n ≥ 1), we get∣∣∣∣∣
n∑

k=1

( |∆(tk)| − |∆(tnk)| )

∣∣∣∣∣ ≤
n∑

k=1

∣∣∣ |∆(tk)| − |∆(tnk)|
∣∣∣ ≤ M tn+1

∆(λn)

∆(λn+1)

for some M > 0. But, we have ( tn+1∆(λn)/∆(λn+1) ) ∈ ℓ∞ and it follows that

(
∑n

k=1 |∆(tk)| −
∑n

k=1 |∆(tnk)| )
∞
n=1 ∈ ℓ∞. Thus, we deduce that (

∑n
k=1 |∆(tnk)| ) ∈

ℓ∞ ⇐⇒ (
∑n

k=1 |∆(tk)| ) ∈ ℓ∞. That is supn

∑n
k=1 |∆(tnk)| < ∞ ⇐⇒

∑∞
k=1 |∆(tk)| < ∞

which can equivalently be written as supn

∑n
k=1 |∆(tnk)| < ∞ ⇐⇒ t ∈ bv1. This ends

the proof, since t ∈ bv1 ⇐⇒ ∆(u) ∈ bv1 by part (2). 2

3.3 Main Results

In the last section, we prove the main inclusion relations between the old and new

sequence spaces of series. We essentially characterize the case in which the inclusions

bs ⊂ bsλ, cs ⊂ csλ and cs0 ⊂ csλ0 hold, and discuss their equalities.

Theorem 3.3.1 Let u = (uk) be defined by uk = λk/(λk − λk−1) for all k ≥ 1. Then,

we have the following facts:

(1) The inclusions cs ⊂ csλ and bs ⊂ bsλ hold if and only if 1/λ ∈ ℓ1 and ∆(u) ∈ bv1.

(2) The equalities csλ = cs and bsλ = bs hold if and only if u ∈ ℓ∞ and ∆(u) ∈ bv0.

(3) The inclusions cs ⊂ csλ and bs ⊂ bsλ strictly hold if and only if 1/λ ∈ ℓ1,

u /∈ ℓ∞ and ∆(u) ∈ bv1.

Proof. To prove (1), suppose that the inclusions cs ⊂ csλ and bs ⊂ bsλ hold. Then,

we have e1 ∈ cs and e1 ∈ bs, where e1 = (1, 0, 0, · · · ). Thus, we must have e1 ∈ csλ as

well as e1 ∈ bsλ. This implies that Λ̂(e1) ∈ c and Λ̂(e1) ∈ ℓ∞, respectively. Also, by

using (2.2.5), we find that Λ̂n(e1) = λ1 σn(1/λ) = λ1

∑n
k=1(1/λk) for all n ≥ 1. Thus,
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we conclude that σ(1/λ) ∈ c and σ(1/λ) ∈ ℓ∞ and hence 1/λ ∈ cs and 1/λ ∈ bs,

respectively. Therefore, in both cases, we get the same result which is 1/λ ∈ ℓ1 (see

Remark 3.1.3). That is 1/λ ∈ ℓ1 is necessary condition for both given inclusions (if

1/λ /∈ ℓ1; then both inclusions cannot be satisfied, see Example 2.2.9). Thus, we

assume that 1/λ ∈ ℓ1 and then it can easily be seen that the inclusions cs ⊂ csλ and

bs ⊂ bsλ hold if and only if Λ̂ ∈ (cs, c) and Λ̂ ∈ (bs, ℓ∞), respectively. To see that, we

have the following equivalences:

cs ⊂ csλ ⇐⇒ x ∈ csλ for all x ∈ cs ⇐⇒ Λ̂(x) ∈ c for all x ∈ cs ⇐⇒ Λ̂ ∈ (cs, c),

bs ⊂ bsλ ⇐⇒ x ∈ bsλ for all x ∈ bs ⇐⇒ Λ̂(x) ∈ ℓ∞ for all x ∈ bs ⇐⇒ Λ̂ ∈ (bs, ℓ∞).

Thus, to obtain the other necessary and sufficient conditions for these two inclusions, we

have to find the required conditions for Λ̂ ∈ (cs, c) and Λ̂ ∈ (bs, ℓ∞) by means of Lemma

1.3.14 with Λ̂ instead of A. For this, it follows from (3.2.1) and the definition of our

matrix Λ̂ that λ̂nk = tnk for 1 ≤ k ≤ n and λ̂nk = 0 for k > n, where n, k ≥ 1. Thus, by

using the entries of Λ̂, we deduce from condition (1.3.2) that limn→∞ λ̂nk = limn→∞ tnk

exists for every k ≥ 1. But these limits actually exist for all k ≥ 1 (as 1/λ ∈ ℓ1), where

limn→∞ tnk = tk = ∆(λk)
∑∞

j=k 1/λj for each k. Thus, condition (1.3.2) is already

satisfied for Λ̂. Also, condition (1.3.7) trivially holds, since Λ̂ is a triangle and so

λ̂nk = 0 when k > n for each n ≥ 1 and this implies that limk→∞ λ̂nk = 0 for every

n ≥ 1. Thus, the common condition (1.3.6) is left, and this condition together with

1/λ ∈ ℓ1 are the necessary and sufficient conditions for both inclusions. Moreover, for

every n, k ≥ 1 we have

λ̂nk − λ̂n,k+1 =


−∆(tnk+1) ; (k < n),

∆(λn)/λn ; (k = n),

0 ; (k > n),
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∞∑
k=1

∣∣∣λ̂nk − λ̂n,k+1

∣∣∣ = ∆(λn)

λn

+
n−1∑
k=1

|∆(tnk+1)| = −tn1 +
∆(λn)

λn

+
n∑

k=1

|∆(tnk)|,

and since (−tn1 +∆(λn)/λn) ∈ ℓ∞; we deduce that supn

∑∞
k=1 |λ̂nk− λ̂n,k+1| < ∞ if and

only if supn

∑n
k=1 |∆(tnk)| < ∞. Therefore, condition (1.3.6) is satisfied for Λ̂ if and

only if supn

∑n
k=1 |∆(tnk)| < ∞ (or equivalently ∆(u) ∈ bv1 by (3) of Lemma 3.2.4).

Consequently, the inclusions cs ⊂ csλ and bs ⊂ bsλ hold if and only if 1/λ ∈ ℓ1 and

∆(u) ∈ bv1. To prove (2), we can use the equality (2.2.3) mentioned in Lemma 2.2.1.

That is, we have the equality xk − Λk−1(x) = uk [Λk(x)− Λk−1(x)] which is satisfied

for every x ∈ w and all k ≥ 1. Thus, by taking the summation of both sides from

k = 1 to n ≥ 1, we get the following relation:

σn(x)− Λ̂n−1(x) =
n∑

k=1

uk [Λk(x)− Λk−1(x)] , (n ≥ 1)

which can be written as follows:

σn(x)− Λ̂n−1(x) = un+1 Λn(x)−
n∑

k=1

∆(uk+1) Λk(x) , (n ≥ 1). (3.3.1)

Now, if the equalities csλ = cs and bsλ = bs hold; we deduce from (3.3.1) that

u ∈ ℓ∞ and ∆(u) ∈ bv1. But bv1 ⊂ c and so ∆(u) ∈ c such that limk→∞ ∆(uk) =

limk→∞ uk/k = 0 (since u is bounded) which implies that ∆(u) ∈ bv0, where bv0 =

bv1 ∩ c0. Conversely, if u ∈ ℓ∞ and ∆(u) ∈ bv0; it follows from (3.3.1) that x ∈ csλ ⇔

x ∈ cs as well as x ∈ bsλ ⇔ x ∈ bs, which means that both equalities csλ = cs and

bsλ = bs are satisfied (we may note that: (i) u ∈ ℓ∞ ⇒ 1/λ ∈ ℓ1, (ii) xy ∈ cs for all

x ∈ cs ⇔ y ∈ bv1, and (iii) xy ∈ bs for all x ∈ bs ⇔ y ∈ bv0). Finally, part (3) follows

from (1) and (2). This completes the proof 2

Corollary 3.3.2 If the inclusion cs ⊂ csλ holds; then for every x ∈ cs we have

lim
n→∞

Λ̂n(x) = lim
n→∞

n∑
k=1

tnk xk = lim
n→∞

n∑
k=1

tk xk.
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That is lim
n→∞

n∑
k=1

(
∆(λk)

n∑
j=k

1

λj

)
xk = lim

n→∞

n∑
k=1

(
∆(λk)

∞∑
j=k

1

λj

)
xk .

Proof. Let x ∈ cs. Then, for every n ≥ 1, we have

Λ̂n(x) =
n∑

k=1

tnk xk =
n∑

k=1

tk xk −
( ∞∑

j=n+1

1

λj

)( n∑
k=1

∆(λk)xk

)
and since xk = σk(x)− σk−1(x); we get

n∑
k=1

∆(λk)xk = ∆(λn+1)σn(x)−
n∑

k=1

(∆(λk+1)−∆(λk) ) σk(x).

Thus, we obtain that

Λ̂n(x) =
n∑

k=1

tk xk + tn+1 ( σ̈n(x)− σn(x) ) (n ≥ 1), (3.3.2)

where σ̈n(x) is given by

σ̈n(x) =
1

∆(λn+1)

n∑
k=1

(∆(λk+1)−∆(λk) ) σk(x) (n ≥ 1).

That is σ̈(x) = Λ̈(σ(x)) and Λ̈ is the matrix Λ with the sequence (∆(λk+1)) instead

of (λk), where (∆(λk+1))
∞
k=k0

is strictly increasing to ∞ (for some integer k0 ≥ 1 by

Lemma 3.2.1). Hence, we conclude that limn→∞ σ̈n(x) = limn→∞ σn(x) by regularity

of Λ and Λ̈ (see (1) of Lemma 2.2.1). Therefore, our result is now proved by going to

the limits in both sides of (3.3.2) as n → ∞. 2

Theorem 3.3.3 The inclusion cs0 ⊂ csλ0 strictly holds if and only if there exists a

positive real number 0 < a < 1 such that ∆(uk+1) = a for all k ≥ 1 (equivalently:

cs0 ⊂ csλ0 strictly holds if and only if there exists a positive real number b > 1 such that

tk = b for all k ≥ 1). Furthermore, the equality csλ0 = cs0 cannot be held.

Proof. Assume ∆(uk+1) = a (0 < a < 1) for all k ≥ 1, i.e. (∆(u2),∆(u3), · · · ) is

constant. Then 1 + λk∆(1/∆(λk+1)) = a and so 1/∆(λk) − 1/∆(λk+1) = (1 − a)/λk.
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Thus ∆(λ) is increasing to ∞ and by taking the summation from k = n to ∞ we get

tn = 1/(1−a) for all n ≥ 1 (tn is constant). In such case, it is obvious that 1/λ ∈ ℓ1 and

∆(u) ∈ bv1. Thus, it follows by (1) of Theorem 3.3.1 that the inclusion cs ⊂ csλ holds.

Also, for any x ∈ cs0, we have x ∈ csλ (since cs0 ⊂ cs ⊂ csλ). Thus, we deduce from

Corollary 3.3.2 that limn→∞ Λ̂n(x) = ( 1/(1− a) ) limn→∞ σn(x) = 0 which means that

x ∈ csλ0 . Hence, the inclusion cs0 ⊂ csλ0 holds. Conversely, if the inclusion cs0 ⊂ csλ0

holds; then for each k ≥ 1, we have limn→∞ Λ̂n(êk) = 0, where êk = ek − ek+1 ∈ cs0

for all k. But limn→∞ Λ̂n(êk) = −∆(tk+1) and so ∆(tk+1) = 0 for all k ≥ 1. Thus,

there exists a positive real b > 1 such that tk = b for all k ≥ 1 (as t1 > 1). Hence

tk/∆(λk)− tk+1/∆(λk+1) = b/∆(λk)−b/∆(λk+1) and so 1−1/b = 1+λk∆(1/∆(λk+1))

which yields ∆(uk+1) = (b − 1)/b for all k ≥ 1 and 0 < (b − 1)/b < 1 and this proves

the given equivalence. Further, if the inclusion cs0 ⊂ csλ0 holds; then it must be strict,

since the equality can only be held if a = 0 (as the equality implies that cs0 ⊂ csλ0 and

so µ̄ ⊂ µ̄λ, see (2) of Theorem 3.3.1) which is impossible (as ∆(u2) ̸= 0 for any λ). 2

At the end of this chapter, we give some examples to support our main results.

Example 3.3.4 To each non-negative integer m ≥ 0, we will associate other spaces

csλ0 , csλ and bsλ depending on m (as particular cases of our spaces) such that the

inclusions cs0 ⊂ csλ0 , cs ⊂ csλ and bs ⊂ bsλ strictly hold by Theorems 3.3.1 and 3.3.3.

That is, it will be there an infinitely many number of these λ-sequence spaces according

to m. For this, define the sequence λ = (λk) by

λk = k(k + 1) · · · (k +m+ 1) =
(k +m+ 1)!

(k − 1)!
(k ≥ 1).

Then, it can easily be deriving the following (k, n ≥ 1):

∆(λk) = (m+ 2) [(k +m)!/(k − 1)!]
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uk = (k +m+ 1)/(m+ 2) , ∆(uk+1) = 1/(m+ 2) (constant)

1

λj

=
1

j(j + 1) · · · (j +m+ 1)
=

1

(m+ 1)!

m∑
i=0

(−1)i
(m
i

)[
1

j + i
− 1

j + i+ 1

]
n∑

j=k

1

λj

=
1

(m+ 1)!

m∑
i=0

(−1)i
(
m
i

)[
1

k + i
− 1

n+ i+ 1

]
=

1

m+ 1

[
(k − 1)!

(k +m)!
− n!

(n+m+ 1)!

]

tnk = ∆(λk)
n∑

j=k

1

λj

=
m+ 2

m+ 1

[
1−

(k +m
k − 1

)/(n+m+ 1
n

)]

tk = ∆(λk)
∞∑
j=k

1

λj

=
m+ 2

m+ 1
(constant)

Λ̂n(x) =
m+ 2

m+ 1

[
σn(x)−

n∑
k=1

xk

(k +m
k − 1

)/(n+m+ 1
n

)]

Λ̂n(x) =
m+ 2

m+ 1

n∑
k=1

σk(x)
(k +m

k

)/(n+m+ 1
n

)
.

Further, from the equality tk = (m+2)/(m+1); we deduce the following new or known

formulae for summation (m ≥ 0 and k ≥ 1):

∞∑
n=k

m+ 1

n(n+ 1) · · · (n+m+ 1)
=

1

k(k + 1) · · · (k +m)

∞∑
n=k

1

n(n+ 1) · · · (n+m+ 1)
=

1

(m+ 1)!

m∑
i=0

(−1)i
(m
i

)/
(k + i)

m∑
i=0

(−1)i
(m
i

)/
(k + i) =

m!

k(k + 1) · · · (k +m)

∞∑
n=k

(k +m
k − 1

)/(n+m+ 1
n− 1

)
=

m+ 2

m+ 1
·

Remark 3.3.5 We must note that the condition 0 < a < 1 (or b > 1) is necessary in

Theorem 3.3.3, see Example 2.2.9 for the case a = 1 in which µ̄ ̸⊂ µ̄λ as well as µ̄λ ̸⊂ µ̄,

where µ̄ is any of the spaces bs, cs or cs0.

Example 3.3.6 Consider the sequence λk = αk, where α > 1. Then, we have the

following:
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λ =
(
α, α2, α3, α4, · · ·

)
,

∆(λ) =
(
α, α(α− 1), α2(α− 1), α3(α− 1), · · ·

)
,

u =
(
1,

α

α− 1
,

α

α− 1
,

α

α− 1
, · · ·

)
∈ ℓ∞,

∆(u) =
(
1,

1

α− 1
, 0, 0, 0, · · ·

)
∈ bv0,

t =
( α

α− 1
, 1, 1, 1, 1, · · ·

)
∈ bv1.

Thus, we note that u ∈ ℓ∞, ∆(u) ∈ bv0 and ∆(u2) ̸= 0 while ∆(uk) = 0 for all k > 2

(also t1 ̸= 1 while tk = 1 for all k > 1). Hence, it follows by Theorems 3.3.1 and 3.3.3

that bsλ = bs and csλ = cs while cs0 ̸⊂ csλ0 as well as csλ0 ̸⊂ cs0 (as ∆(uk+1) is not

constant for all k ≥ 1).

Example 3.3.7 We have the following particular case:

λ =
(
2, 6, 12, 36, 72, 216, · · ·

)
,

∆(λ) =
(
2, 4, 6, 24, 36, 144, · · ·

)
,

u =
(
1,

3

2
, 2,

3

2
, 2,

3

2
, · · ·

)
∈ ℓ∞,

∆(u) =
(
1,

1

2
,
1

2
, −1

2
,
1

2
, −1

2
, · · ·

)
/∈ bv1,

t =
( 8

5
,
6

5
,
4

5
,
6

5
,
4

5
,
6

5
, · · ·

)
/∈ bv1.

Thus, it follows by Theorems 3.3.1 and 3.3.3 that µ̄ ̸⊂ µ̄λ as well as µ̄λ ̸⊂ µ̄, where µ̄

is any of the spaces bs, cs or cs0 (note that: 1/λ ∈ ℓ1 and u ∈ ℓ∞).

52



Chapter 4

KÖTHE-TOEPLITZ DUALITY



4 KÖTHE-TOEPLITZ DUALITY

In the present chapter, we conclude the α-, β- and γ-duals for the λ-sequence spaces

of bounded, convergence and null series. Also, we study some additional properties of

their duals. This chapter is divided into three sections, the first is devoted to study the

α-duals, the second is for the β- and γ-duals and the last is to deduce some additional

results. The materials of this chapter are part of our research paper [49] which has

been published in the Global Sci. J. on 2022.

By µ, we denote any of the spaces c0, c or ℓ∞, and µ̄ stands for the respective one

of the spaces cs0, cs or bs, and so µ̄λ is the corresponding one of the λ-spaces csλ0 , csλ

or bsλ. By θ, we mean any one of the duality symbols α, β or γ, that is θ := α, β or γ.

Thus, the θ-dual of a sequence space X is the α-, β- or γ-dual of X which was defined

by (1.1.2) as Xθ = {a ∈ w : ax ∈ ⟨θ⟩ for all x ∈ X}, where ⟨α⟩ = ℓ1, ⟨β⟩ = cs and

⟨γ⟩ = bs. For example, it is known that µθ = ℓ1 (Lemma 1.3.4), and the duals of µ̄ are

given in Lemma 1.3.5, and we are going to find out the θ-duals of µ̄λ.

4.1 The α-Duals

In the first section, we obtain the α-duals of the λ-sequence spaces µ̄λ of bounded,

convergent and null series, where

{µ̄λ}α = {a ∈ w : ax ∈ ℓ1 for all x ∈ µ̄λ}.

For this, we will use our usual notations and terminologies given in previous chapters.

First, we define the sequence u = (uk) of positive reals as follows:

uk =
λk

∆(λk)
=

λk

λk − λk−1

(k ≥ 1). (4.1.1)
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Next, every sequence x = (xk) ∈ w will be connected with another sequence y = (yk)

by the relation y = Λ̂(x), and we then say that y is the sequence connected with x by

y = Λ̂(x) which together with (2.2.6) yields that

yk = Λ̂k(x) =
∑k

j=1
Λj(x) and ∆(yk) = Λk(x) (k ≥ 1).

Then, by using (2.2.8), we have xk = ∆(λk∆(yk))/∆(λk) (for all k ≥ 1) which can

equivalently be written as follows:

xk = ∆(yk−1) + uk∆
2(yk) = ∆(yk−1) + uk(∆(yk)−∆(yk−1) ) (k ≥ 1). (4.1.2)

Thus, here and in what follows, we assume that x and y are connected by y = Λ̂(x)

which implies the validity of (4.1.2) from which we obtain that

xk = ukyk − (2uk − 1)yk−1 + (uk − 1)yk−2 (k ≥ 1), (4.1.3)

where x1 = u1y1 = y1 and x2 = u2y2 − (2u2 − 1)y1.

Remark 4.1.1 It is obvious that x and y are connected by y = Λ̂(x) if and only if

(4.1.2) is satisfied. Also, it must be noted that x ∈ µ̄λ ⇐⇒ ∆(y) ∈ µ̄ ⇐⇒ y ∈ µ. In

fact, it follows by Theorem 2.2.6 that for every x ∈ µ̄λ there exists a unique y ∈ µ

given by y = Λ̂(x) and conversely, for every y ∈ µ there exists a unique x ∈ µ̄λ given

by (4.1.2) and we have ∥x∥sλ = ∥y∥∞ by Theorem 2.2.5.

Now, we may begin with the following main result which shows that the spaces csλ0 ,

csλ and bsλ have the same α-duals for the same sequence λ, i.e., their α-duals depend

only upon λ.

Theorem 4.1.2 The α-duals of the spaces µ̄λ are given by

{
µ̄λ

}α
=

{
a ∈ w : au = (akuk) ∈ ℓ1

}
,

where u = (uk) is defined by uk = λk/∆(λk) for all k ≥ 1.
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Proof. For any x ∈ µ̄λ, let y = (yk) be the sequence connected by y = Λ̂(x). Then

y ∈ µ (see Remark 4.1.1) and for every a = (an) ∈ w, we can use (4.1.3) to get

anxn = anunyn − an(2un − 1)yn−1 + an(un − 1)yn−2 = An(y) (n ≥ 1), (4.1.4)

where A = [ank]
∞
n,k=1 is a triangle defined by

ank =


anun ; (k = n),

−an(2un − 1) ; (k = n− 1),

an(un − 1) ; (k = n− 2),

0 ; (otherwise).

That is, our A is the following triangle:

A =



a1u1 0 0 0 · · ·
−a2(2u2 − 1) a2u2 0 0 · · ·
a3(u3 − 1) −a3(2u3 − 1) a3u3 0 · · ·

0 a4(u4 − 1) −a4(2u4 − 1) a4u4 · · ·
0 0 a5(u5 − 1) −a5(2u5 − 1) · · ·
... ... ... ...


.

Thus, it follows by (4.1.4) that ax = A(y) for every x ∈ µ̄λ with y = Λ̂(x) ∈ µ. Also,

by using (4.1.4), we deduce that

a ∈
{
µ̄λ

}α ⇐⇒ ax ∈ ℓ1 for all x ∈ µ̄λ ⇐⇒ A(y) ∈ ℓ1 for all y ∈ µ ⇐⇒ A ∈ (µ, ℓ1),

where A(y) exists for every y ∈ µ (as A is a triangle by Lemma 1.3.7). This, together

with Lemma 1.3.8 (when p = 1), leads us to conclude that

a ∈
{
µ̄λ

}α ⇐⇒ sup
K∈K

∞∑
n=1

∣∣∣∣∣∑
k∈K

ank

∣∣∣∣∣ < ∞ ,

where K stands for the collection of all non-empty finite subsets of positive integers.

On other side, it must be noted that u1 = 1 and so u1 = 2u1−1. Thus, for each n ≥ 1,

it follows by definition of A that |
∑

k∈Kank| ≤ |an|(2un − 1) for every K ∈ K. Thus,

we obtain that
∞∑
n=1

∣∣∣∣∣∑
k∈K

ank

∣∣∣∣∣ ≤
∞∑
n=1

|an|(2un − 1)
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for every K ∈ K which implies that

sup
K∈K

∞∑
n=1

∣∣∣∣∣∑
k∈K

ank

∣∣∣∣∣ ≤
∞∑
n=1

|an|(2un − 1). (4.1.5)

Besides, by taking Km = {1, 3, 5, · · · , 2m − 1} ∈ K for any positive integer m. Then,

for each n ≥ 1, it can easily be seen that

∣∣∣∣∣ ∑
k∈Km

ank

∣∣∣∣∣ =


|an|(2un − 1) ; (n ≤ 2m),

|a2m+1|(u2m+1 − 1) ; (n = 2m+ 1),

0 ; (n ≥ 2(m+ 1)).

Therefore, we obtain that

2m∑
n=1

|an|(2un − 1) =
2m∑
n=1

∣∣∣∣∣ ∑
k∈Km

ank

∣∣∣∣∣ =
∞∑
n=1

∣∣∣∣∣ ∑
k∈Km

ank

∣∣∣∣∣− |a2m+1|(u2m+1 − 1)

=⇒
2m∑
n=1

|an|(2un − 1) <
∞∑
n=1

∣∣∣∣∣ ∑
k∈Km

ank

∣∣∣∣∣ ≤ sup
K∈K

∞∑
n=1

∣∣∣∣∣∑
k∈K

ank

∣∣∣∣∣
=⇒

2m∑
n=1

|an|(2un − 1) < sup
K∈K

∞∑
n=1

∣∣∣∣∣∑
k∈K

ank

∣∣∣∣∣ (m ≥ 1)

and by taking the supremum over all positive integer m, we get

∞∑
n=1

|an|(2un − 1) ≤ sup
K∈K

∞∑
n=1

∣∣∣∣∣∑
k∈K

ank

∣∣∣∣∣ . (4.1.6)

Hence, by combining the inequalities (4.1.5) and (4.1.6), we deduce that

sup
K∈K

∞∑
n=1

∣∣∣∣∣∑
k∈K

ank

∣∣∣∣∣ =
∞∑
n=1

|an|(2un − 1)

which yields that

a ∈
{
µ̄λ

}α ⇐⇒
∑∞

n=1
|an|(2un − 1) < ∞ .

Further, since un ≥ 1 for all n; we find that un ≤ un+un−1 ≤ 2un and so un ≤ 2un−1 ≤

2un for all n, which implies that
∑∞

n=1|an|(2un − 1) < ∞ ⇐⇒
∑∞

n=1|anun| < ∞.

Consequently, we deduce that a ∈ {µ̄λ}α ⇐⇒
∑∞

n=1|anun| < ∞ ⇐⇒ au ∈ ℓ1 which

proves our result and so we have done. 2
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Corollary 4.1.3 The α-duals of the spaces µ̄λ are given by

{
µ̄λ

}α
=

{
(ak/uk) : a = (ak) ∈ ℓ1

}
,

where u = (uk) with uk = λk/∆(λk) for all k ≥ 1.

Proof. This formula of {µ̄λ}α is immediate by Theorem 4.1.2. To see that, let’s denote

the new formula of {µ̄λ}α by Dα. Then, we have to show that {µ̄λ}α = Dα. For this, let

a ∈ {µ̄λ}α. Then b = au ∈ ℓ1 by Theorem 4.1.2. Now, since b ∈ ℓ1; we find b/u ∈ Dα.

But, from b = au, we get b/u = a and so a ∈ Dα. This implies that {µ̄λ}α ⊂ Dα.

Conversely, let a ∈ Dα. Then a = (bk/uk) for some b ∈ ℓ1. Thus au = (bk) ∈ ℓ1 and so

a ∈ {µ̄λ}α by Theorem 4.1.2 which means that Dα ⊂ {µ̄λ}α. Hence {µ̄λ}α = Dα. 2

Remark 4.1.4 We have the inclusion {µ̄λ}α ⊂ ℓ1. To see that, it follows by Theorem

4.1.2 that a ∈ {µ̄λ}α =⇒ au ∈ ℓ1. But un ≥ 1 for all n and hence a ∈ ℓ1.

4.2 The β- and γ-Duals

In this section, we obtain the β- and γ-duals of our spaces µ̄λ, where

{µ̄λ}β = {a ∈ w : ax ∈ cs for all x ∈ µ̄λ},

{µ̄λ}γ = {a ∈ w : ax ∈ bs for all x ∈ µ̄λ}

and we may begin with the following theorem which shows that β-dual of the space

bsλ is different from those of csλ0 and csλ. Thus, we will use the symbol η̄λ to denote

any of the spaces csλ0 or csλ, where η̄ is the respective one of the spaces cs0 or cs, and

so η is the corresponding space c0 or c, respectively. Also, for any sequence a = (ak),

we define its associated sequence â = (âk), via the terms of a, as follows:

âk = ∆(ak+1uk+1)− ak+1 = λk∆

(
ak+1

∆(λk+1)

)
(k ≥ 1). (4.2.1)
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Theorem 4.2.1 The β-duals of the spaces µ̄λ are given by

{
bsλ

}β
=

{
a ∈ w : au = (akuk) ∈ c0 and â = (âk) ∈ bv1

}
,

{
η̄λ
}β

=
{
a ∈ w : au = (akuk) ∈ ℓ∞ and â = (âk) ∈ bv1

}
,

where η̄λ stands for any one of the spaces csλ0 or csλ, and the sequences u and â are

given by (4.1.1) and (4.2.1), respectively.

Proof. For every x ∈ µ̄λ, let y ∈ µ be the sequence connected by y = Λ̂(x). Then,

for any a = (ak) ∈ w, we may use (4.1.2) and (4.2.1) with help of Abel’s formula of

summation by parts, to derive the following relation:∑n

k=1
akxk =

∑n

k=1
ak∆(yk−1) +

∑n

k=1
akuk∆

2(yk)

=
∑n−1

k=1
ak+1∆(yk) + anun∆(yn)−

∑n−1

k=1
∆(ak+1uk+1)∆(yk)

= anun∆(yn)−
∑n−1

k=1
âk∆(yk)

= anun∆(yn)− ân−1yn−1 +
∑n−2

k=1
∆(âk+1)yk,

where â0 = y0 = 0 and the sum on right-hand side is zero for n = 1, 2. Thus, we have

n∑
k=1

akxk = anun∆(yn)− ân−1yn−1 +
n−2∑
k=1

∆(âk+1)yk (n ≥ 1) (4.2.2)

which can equivalently be written as follows:

n∑
k=1

akxk =
n−2∑
k=1

∆(âk+1)yk − (anun + ân−1)yn−1 + anunyn = An(y) (n ≥ 1), (4.2.3)

where A = [ank]
∞
n,k=1 is a triangle defined by

ank =


anun ; (k = n),

−(anun + ân−1) ; (k = n− 1),

∆(âk+1) ; (k ≤ n− 2),

0 ; (k > n).
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That is, the infinite matrix A is the following triangle:

A =



a1u1 0 0 0 · · ·
−(a2u2 + â1) a2u2 0 0 · · ·

∆(â2) −(a3u3 + â2) a3u3 0 · · ·
∆(â2) ∆(â3) −(a4u4 + â3) a4u4 · · ·
∆(â2) ∆(â3) ∆(â4) −(a5u5 + â4) · · ·

... ... ... ...


.

Thus, it follows by (4.2.3) that
∑n

k=1akxk = An(y) for all n and so
(∑n

k=1akxk

)
= A(y)

for every x ∈ µ̄λ with y = Λ̂(x) ∈ µ. Hence, we immediately deduce that

a ∈
{
µ̄λ

}β ⇐⇒ ax ∈ cs for all x ∈ µ̄λ ⇐⇒ A(y) ∈ c for all y ∈ µ ⇐⇒ A ∈ (µ, c).

This leads us to conclude the following three equivalences:

a ∈ {bsλ}β ⇐⇒ A ∈ (ℓ∞, c),

a ∈ {csλ}β ⇐⇒ A ∈ (c, c),

a ∈ {csλ0}β ⇐⇒ A ∈ (c0, c).

Thus, in the first case, it follows by (1) of Lemma 1.3.10 that a ∈ {bsλ}β ⇐⇒ the

following conditions hold:

sup
n

∑∞

k=1
|ank| < ∞ , (4.2.4)

lim
n→∞

ank = ak exists for every k ≥ 1 , (4.2.5)

lim
n→∞

∑∞

k=1
|ank − ak| = 0 . (4.2.6)

On other side, for every n > 1, it follows by definition of A that

∞∑
k=1

|ank| =
n−2∑
k=1

|∆(âk+1)|+ |anun + ân−1|+ |anun|

which implies that

sup
n

∞∑
k=1

|ank| < ∞ ⇐⇒ au ∈ ℓ∞ and â ∈ bv1 ,
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where â ∈ bv1 =⇒ â ∈ c ⊂ ℓ∞ and so (anun+ ân−1) ∈ ℓ∞ whenever au ∈ ℓ∞. Also, it is

obvious that (4.2.5) is satisfied and so it is superfluous, where limn→∞ ank = ∆(âk+1)

and so ak = ∆(âk+1) for every k ≥ 1. Further, for each n > 1, we have
∞∑
k=1

|ank − ak| = |anun + ân−1 +∆(ân)|+ |anun −∆(ân+1)|+
∞∑

k=n+1

|∆(âk+1)|

= |anun + ân|+ |anun + ân − ân+1|+
∞∑

k=n+1

|∆(âk+1)| .

Besides, it can easily be seen that

lim
n→∞

∞∑
k=n+1

|∆(âk+1)| = 0 ⇐⇒ lim
n→∞

n∑
k=1

|∆(âk+1)| exists ⇐⇒ â ∈ bv1

and

(anun + ân) ∈ c0 , (anun + ân − ân+1) ∈ c0 ⇐⇒ au ∈ c0 , â ∈ c0 ⇐⇒ au ∈ c0,

where â ∈ c0 is implied by au ∈ c0. To see that, we have uk ≥ 1 and so |ak| ≤ |akuk|

for all k. Thus au ∈ c0 implies that a ∈ c0 as well as ∆(au) ∈ c0. Therefore, it follows

that ∆(au) − a ∈ c0 and so â ∈ c0 by (4.2.1), that is au ∈ c0 implies both a ∈ c0 and

â ∈ c0. Hence, condition (4.2.6) can equivalently be written as follows:

lim
n→∞

∞∑
k=1

|ank − ak| = 0 ⇐⇒ au ∈ c0 and â ∈ bv1.

Consequently, we conclude that

a ∈ {bsλ}β ⇐⇒ au ∈ c0 and â ∈ bv1

which proves the given formula of {bsλ}β (note that: for our triangle A, both conditions

(4.2.4) and (4.2.5) are implied by the strong condition (4.2.6)). Next, in the second

and third cases, we have a ∈ {csλ}β ⇐⇒ A ∈ (c, c), and a ∈ {csλ0}β ⇐⇒ A ∈ (c0, c).

Thus, it follows by (2) and (3) of Lemma 1.3.10 that

a ∈ {csλ}β ⇐⇒ (4.2.4) and (4.2.5) hold, and lim
n→∞

∑∞

k=1
ank exists,
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a ∈ {csλ0}β ⇐⇒ (4.2.4) and (4.2.5) hold.

But, we have already show that (4.2.5) is satisfied and so it is superfluous. Similarly, it

can easily be shown that the other condition of existence of the limit limn→∞
∑∞

k=1ank

is also satisfied and so it is redundant, where
∑∞

k=1ank = −â1 for all n > 1 and hence

limn→∞
∑∞

k=1ank = −â1 exists. We therefore deduce that

a ∈ {csλ}β ⇐⇒ a ∈ {csλ0}β ⇐⇒ (4.2.4) holds ⇐⇒ au ∈ ℓ∞ and â ∈ bv1

which proves the given formula of {η̄λ}β and this ends the proof. 2

Moreover, the spaces µ̄λ have the same γ-dual for the same sequence λ, as follows:

Theorem 4.2.2 The γ-duals of the spaces µ̄λ are given by

{
µ̄λ

}γ
=

{
a ∈ w : au = (akuk) ∈ ℓ∞ and â = (âk) ∈ bv1

}
,

where the sequences u and â are given by (4.1.1) and (4.2.1), respectively.

Proof. Let x ∈ µ̄λ be given and let y ∈ µ be the sequence connected by y = Λ̂(x).

Also, for every a = (ak) ∈ w, let A be the triangle defined as in the proof of Theorem

4.2.1, above. Then, we can similarly show, by using (4.2.3) with Lemma 1.3.9, that

a ∈ {µ̄λ}γ ⇐⇒ A ∈ (µ, ℓ∞) ⇐⇒ (4.2.4) holds ⇐⇒ au ∈ ℓ∞ and â ∈ bv1

which proves the present result. 2

4.3 Additional Results

We my begin with the following remark concerning with our main results in the

previous sections.

Remark 4.3.1 We may note the following:
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(1) It must be noticed that {csλ0}θ = {csλ}θ for θ = α, β and γ, while {bsλ}θ = {η̄λ}θ

for only θ = α and γ. Also, we may observe that {η̄λ}β = {η̄λ}γ.

(2) As we have shown in the proof of Theorem 4.2.1, we have uk ≥ 1 and so |ak| ≤ |akuk|

for all k. Thus, if au belongs to any of the spaces ℓ1, c0 or ℓ∞; then a must belong

to the same space. It follows that {µ̄λ}θ ⊂ ℓ∞, specially {µ̄λ}α ⊂ ℓ1 and {bsλ}β ⊂ c0.

Besides, if u /∈ ℓ∞; then we also have {µ̄λ}θ ⊂ c0 for θ = β and γ.

(3) In particular, if a ∈ {bsλ}β; then a ∈ c0 and so â ∈ c0 which implies that â ∈ bv0.

Thus a ∈ {bsλ}β ⇐⇒ au ∈ c0 and â ∈ bv1 ⇐⇒ au ∈ c0 and â ∈ bv0, and it follows that

{
bsλ

}β
=

{
a ∈ w : au ∈ c0 and â ∈ bv0

}
.

Corollary 4.3.2 We have the following alternative formulae of β- and γ-duals of µ̄λ

{
bsλ

}β
=

{
a ∈ w : au ∈ c0 and â ∈ bsβ

}
,

{
η̄λ
}β

=
{
a ∈ w : au ∈ ℓ∞ and â ∈ η̄ β

}
,

{
µ̄λ

}γ
=

{
a ∈ w : au ∈ ℓ∞ and â ∈ µ̄ γ

}
,

where µ̄ is any of the spaces cs0, cs or bs, while η̄ is either cs0 or cs.

Proof. It is immediate by Lemma 1.3.5 and the results of this chapter with (3) of

Remark 4.3.1. 2

Remark 4.3.3 We have the following:

(1) For any a ∈ {bsλ}β and every y ∈ ℓ∞, we have (anun∆(yn)) ∈ c0 and (ânyn) ∈ c0

(since au ∈ c0 and â ∈ c0).

(2) For any a ∈ {csλ}β and every y ∈ c, we have (anun∆(yn)) ∈ c0 and (ânyn) ∈ c

(because of ∆(y) ∈ c0, au ∈ ℓ∞ and â ∈ bv1 ⊂ c).
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(3) For any a ∈ {csλ0}β and every y ∈ c0, we have (anun∆(yn)) ∈ c0 and (ânyn) ∈ c0

(as y ∈ c0, au ∈ ℓ∞ and â ∈ c).

Corollary 4.3.4 We have the following facts:

(1) If a ∈ {bsλ}β; then
∑∞

k=1akxk =
∑∞

k=1∆(âk+1)yk for every x ∈ bsλ with y = Λ̂(x).

(2) If a ∈ {csλ}β; then
∑∞

k=1akxk = −Lâ0 +
∑∞

k=1∆(âk+1)yk for every x ∈ csλ with

y = Λ̂(x), where L = limn→∞ yn and â0 = limn→∞ ân.

(3) If a ∈ {csλ0}β; then
∑∞

k=1akxk =
∑∞

k=1∆(âk+1)yk for every x ∈ csλ0 with y = Λ̂(x).

Proof. For any x ∈ µ̄λ, let y = Λ̂(x) ∈ µ. Then, for every a ∈ {µ̄λ}β, we have ax ∈ cs

which means that (
∑n

k=1akxk) ∈ c and so limn→∞
∑n

k=1akxk exists. Thus, by going to

the limits in both sides of (4.2.2) as n → ∞ and using Remark 4.3.3, we deduce the

present result (the details are left to the reader). 2

Corollary 4.3.5 We have the following facts:

(1) The inclusions {µ̄λ}α ⊂ {µ̄}α are always satisfied. Further, if u ∈ ℓ∞; then the

equalities {µ̄λ}α = {µ̄}α are satisfied.

(2) If 1/λ ∈ ℓ1 and ∆(u) ∈ bv1; then the inclusions {µ̄λ}β ⊂ {µ̄}β and {µ̄λ}γ ⊂ {µ̄}γ

are satisfied.

(3) If u ∈ ℓ∞ and ∆(u) ∈ bv0; then the identities {µ̄λ}β = {µ̄}β and {µ̄λ}γ = {µ̄}γ

are satisfied.

Proof. For (1), it is obvious by Lemma 1.3.5 and Theorem 4.1.2 that {µ̄λ}α ⊂ ℓ1 =

{µ̄}α. Also, if u ∈ ℓ∞; then au ∈ ℓ1 whenever a ∈ ℓ1 which implies that {µ̄}α ⊂ {µ̄λ}α.

For (2), if 1/λ ∈ ℓ1 and ∆(u) ∈ bv1; then cs ⊂ csλ and bs ⊂ bsλ (see Theorem
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3.3.1) which implies that {csλ}θ ⊂ {cs}θ and {bsλ}θ ⊂ {bs}θ. Also {csλ0}θ = {csλ}θ ⊂

{cs}θ = {cs0}θ (see Lemma 1.3.5 and Remark 4.3.1). For (3), if u ∈ ℓ∞ and ∆(u) ∈ bv0;

then the equalities csλ = cs and bsλ = bs hold (see Theorem 3.3.1) which implies that

{csλ}θ = {cs}θ and {bsλ}θ = {bs}θ. Also {csλ0}θ = {csλ}θ = {cs}θ = {cs0}θ. 2

Remark 4.3.6 Suppose u = e = (1, 1, 1, · · · ) in (4.1.2); we get x = ∆(y) and so

y = σ(x). Thus x ∈ µ̄ ⇐⇒ y ∈ µ. Also, from (4.2.1), we get âk = −ak for all k. Besides,

relation (4.2.2) will be reduced to the form
∑n

k=1akxk = anyn−
∑n−1

k=1∆(ak+1)yk, where

y = σ(x). Therefore, by taking u = (1, 1, 1, · · · ) in Theorems 4.1.2, 4.2.1 and 4.2.2

obtaining the θ-duals of the spaces µ̄λ; these results will be reduced to obtain the

θ-duals of the spaces µ̄ as given by Lemma 1.3.5. That is, θ-duals of µ̄, as given in

Lemma 1.3.5, can be obtained from θ-duals of µ̄λ in Theorems 4.1.2, 4.2.1 and 4.2.2,

by assuming that uk = 1 for all k. Similarly, Remark 4.3.3 and Corollary 4.3.4 will be

valid for β-duals of µ̄ with uk = 1, âk = −ak (k ≥ 1), â0 = −a0 and y = σ(x) instead

of y = Λ̂(x), where x ∈ µ̄ and a ∈ µ̄β.
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5 MATRIX OPERATORS

In this last chapter, we characterized some matrix classes and their matrix operators

related to the λ-sequence spaces µ̄λ of bounded, convergent and null series. More pre-

cisely, we essentially deduced the necessary and sufficient conditions for an infinite

matrix A to act on, into and between the spaces µ̄λ, where µ̄ stands for any of the

spaces cs0, cs or bs. This chapter is divided into three sections, the first is devoted to

characterize matrix operators on the spaces µ̄λ, the second is for matrix operators into

the spaces µ̄λ and the last is for matrix operators between the spaces µ̄λ with some

particular cases. The materials of this chapter are part of our research paper [49] which

has been published in the Global Sci. J. on 2022.

5.1 Matrix Operators on µ̄λ

In this section, we conclude the necessary and sufficient conditions for an infinite

matrix A to act on the λ-sequence spaces µ̄λ.

Every infinite matrix A = [ank] will be associated with an infinite matrix Â called

as the associated matrix of A, and we define this associated matrix Â = [ânk] by

ânk =
λk+1

∆(λk+1)
an,k+1 −

λk

∆(λk)
ank − an,k+1 = λk

(
an,k+1

∆(λk+1)
− ank

∆(λk)

)
(n, k ≥ 1)

which can be redefined in terms of our notation in (4.1.1) as follows:

ânk = uk+1an,k+1 − ukank − an,k+1 = (uk+1 − 1)an,k+1 − ukank (5.1.1)

for all n, k ≥ 1, where uk = λk/∆(λk) (k ≥ 1). Also, for simplicity in notations, we

may define another associated matrix Ā = [ānk] via the entries of Â by

ānk = ân,k+1 − ânk (n, k ≥ 1). (5.1.2)
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Besides, for each n ≥ 1, we have An = (ank)
∞
k=1, Ân = (ânk)

∞
k=1 and Ān = (ānk)

∞
k=1

which are the n-th row sequences in the matrices A, Â and Ā, respectively. That is

Ân = (uk+1an,k+1 − ukank − an,k+1)
∞
k=1 and Ān = (ân,k+1 − ânk)

∞
k=1 for every n ≥ 1.

Further, we assume the sequences x, y ∈ w are connected by the relation y = Λ̂(x) and

so (4.1.2) is satisfied. Then x ∈ µ̄λ ⇐⇒ y ∈ µ. In fact, the sequences x and y are

uniquely determined in the spaces µ̄λ and µ, respectively (since µ̄λ and µ are linearly

isomorphic to each others by Theorem 2.2.5 and Remark 4.1.1). Also, by using (4.1.2)

with the same technique by which (4.2.2) has been derived, we obtain that
m∑
k=1

ankxk = anmum∆(ym)− ân,m−1ym−1 +
m−2∑
k=1

ānkyk (n,m ≥ 1), (5.1.3)

where y0 = 0 and the sum on the right-hand side is zero when m = 1, 2. Moreover, let

ρ̄ be any of the spaces cs0 or bs, and so ρ is the respective one of the spaces c0 or ℓ∞.

Then, if An ∈ {ρ̄λ}β for every n ≥ 1; then we find by Theorem 4.2.1 that Ân ∈ bv1 and

so Ān ∈ ℓ1 for every n ≥ 1, which implies that series on right-hand side of (5.1.3) is

absolutely convergent when m → ∞, where x ∈ ρ̄λ and y ∈ ρ. Further, it follows, by (1)

and (3) of Remark 4.3.3, that limm→∞ anmum∆(ym) = 0 and limm→∞ ân,m−1ym−1 = 0

for every n ≥ 1. Therefore, by passing to the limits in both sides of (5.1.3) when

m → ∞ and using (1) and (3) of Corollary 4.3.4, we deduce that∑∞

k=1
ankxk =

∑∞

k=1
ānkyk =

∑∞

k=1
(ân,k+1 − ânk)yk (n ≥ 1) (5.1.4)

which means that An(x) = Ān(y) for all n, and hence A(x) = Ā(y) for every pair of

sequences x ∈ ρ̄λ and y ∈ ρ which are connected by y = Λ̂(x). Also, this means that

A(x) ∈ X for every x ∈ ρ̄λ if and only if Ā(y) ∈ X for every y ∈ ρ, where X is any

sequence space. On other side, if An ∈ {csλ}β for every n ≥ 1; we similarly find, by

Theorem 4.2.1, that Ân ∈ bv1 and Ān ∈ ℓ1 for every n ≥ 1. Thus, series on right-

hand side of (5.1.3) is also absolutely convergent when m → ∞, where x ∈ csλ and
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y ∈ c. Further, it follows, by (2) of Remark 4.3.3, that limm→∞ anmum∆(ym) = 0 and

limm→∞ ân,mym = Lân for every n ≥ 1, where L = limm→∞ ym and ân = limm→∞ ânm

for all n which implies that
∑∞

k=1ānk = ân − ân1 (n ≥ 1). Therefore, by using (2) of

Corollary 4.3.4 and going to the limits in both sides of (5.1.3) as m → ∞, we get

∞∑
k=1

ankxk =
∞∑
k=1

ānkyk − Lân =
∞∑
k=1

ānk(yk − L)− Lân1 (n ≥ 1) (5.1.5)

which means that An(x) = Ān(y) − Lân for all n, and hence A(x) = Ā(y) − Lâ for

every pair of sequences x ∈ csλ and y ∈ c which are connected by y = Λ̂(x). This also

means that A(x) ∈ X for every x ∈ csλ if and only if Ā(y)− Lâ ∈ X for every y ∈ c,

where â = (ân) and X is any sequence space. Thus, we have proved the following:

Lemma 5.1.1 For any infinite matrix A, let Â and Ā be its associated matrices defined

by (5.1.1) and (5.1.2), respectively. Then, for each n ≥ 1, the following conditions are

equivalent to each others:

(1) An ∈ {µ̄λ}β.

(2) uAn ∈
⟨
µ̄λ

⟩
and Ân ∈ bv1.

(3) uAn ∈
⟨
µ̄λ

⟩
and Ān ∈ µβ,

where µβ = ℓ1,
⟨
bsλ

⟩
= c0 and

⟨
csλ

⟩
=

⟨
csλ0

⟩
= ℓ∞.

Proof. It is immediate by Theorem 4.2.1 and Corollary 4.3.2. 2

Lemma 5.1.2 Let ρ̄ be any of the spaces cs0 or bs, and ρ the respective one of the

spaces c0 or ℓ∞. Then, for any sequence space X and every infinite matrix A, we have

the following facts:
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(1) If An ∈ {ρ̄λ}β for every n ≥ 1; then A(x) = Ā(y) for every pair of sequences

x ∈ ρ̄λ and y ∈ ρ which are connected by the relation y = Λ̂(x). Also A(x) ∈ X

for all x ∈ ρ̄λ if and only if Ā(y) ∈ X for all y ∈ ρ.

(2) If An ∈ {csλ}β for every n ≥ 1; then An(x) = Ān(z)− L(ân1) (n ≥ 1) for every

pair of sequences x ∈ csλ and z ∈ c0 which are connected by z = Λ̂(x) − Le,

where e = (1, 1, 1, · · · ), L = limk→∞ Λ̂k(x) and (ân1) is the 1st column sequence

in Â. Also, we have A(x) ∈ X for all x ∈ csλ if and only if (ânk)
∞
n=1 ∈ X for

every k ≥ 1 and Ā(z) ∈ X for all z ∈ c0.

Proof. we have already proved part (1) and for part (2) let An ∈ {csλ}β for every

n ≥ 1. Then, we obtain by (5.1.5) that An(x) = Ān(z) − L(ân1) (n ≥ 1) for every

pair of sequences x ∈ csλ and z ∈ c0 which are connected by z = Λ̂(x) − Le, where

e = (1, 1, 1, · · · ) and L = limk→∞ Λ̂k(x). Also, assume that A(x) ∈ X for all x ∈ csλ,

and for each k ≥ 1, define a sequence e(k) = (e
(k)
n )∞n=1 by

e
(k)
k =


uk ; (n = k),

−(uk+1 − 1) ; (n = k + 1),

0 ; (otherwise).

Then, it can easily be seen that Λ(e(k)) = ek ∈ cs for every k ≥ 1, where ek = (δnk)
∞
n=1

for all k. Thus e(k) ∈ csλ such that A(e(k)) = (−ânk)
∞
n=1 for all k which implies that

(ânk)
∞
n=1 ∈ X for every k ≥ 1 (by assumption). Also, for any y ∈ c0, let x = (xk)

be given by (4.1.2). Then x ∈ csλ0 such that y = Λ̂(x) and so Ā(y) ∈ X by part

(1). Thus Ā(y) ∈ X for all y ∈ c0. Conversely, suppose that (ânk)
∞
n=1 ∈ X for every

k ≥ 1 and Ā(z) ∈ X for all z ∈ c0. Then (ân1) ∈ X and for every x ∈ csλ we have

z ∈ c0, where z = Λ̂(x) − Le and L = limk→∞ Λ̂k(x). Thus Ā(z) ∈ X and hence

A(x) = Ā(z)− L(ân1) ∈ X. That is A(x) ∈ X for all x ∈ csλ, and we have done. 2
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Now, we have the following main results characterizing matrix operators acting

from csλ0 or bsλ into an arbitrary sequence space X and from csλ into X.

Theorem 5.1.3 Let ρ̄ be any of the spaces cs0 or bs, and ρ the respective one of the

spaces c0 or ℓ∞. Then, for any sequence space X and every infinite matrix A, the

following statements are equivalent to each others:

(1) A ∈ (ρ̄λ, X).

(2) An ∈ {ρ̄λ}β for every n ≥ 1 and Ā(y) ∈ X for all y ∈ ρ.

(3) uAn ∈
⟨
ρ̄λ
⟩

for every n ≥ 1 and Ā ∈ (ρ,X),

where
⟨
bsλ

⟩
= c0 and

⟨
csλ0

⟩
= ℓ∞.

Proof. Suppose that (1) is satisfied, that is A ∈ (ρ̄λ, X). Then An ∈ {ρ̄λ}β for every

n ≥ 1 and A(x) ∈ X for all x ∈ ρ̄λ by Lemma 1.3.6. Thus, for every y ∈ ρ, let x = (xk)

be given by (4.1.2). Then x ∈ ρ̄λ such that y = Λ̂(x) and so Ā(y) ∈ X (as A(x) = Ā(y)

by (1) of Lemma 5.1.2) and since y ∈ ρ was arbitrary; we find that Ā(y) ∈ X for all

y ∈ ρ. Hence, we have An ∈ {ρ̄λ}β for every n ≥ 1 and Ā(y) ∈ X for all y ∈ ρ which

is (2), that is (1) =⇒ (2). Further, assume that (2) is satisfied, that is An ∈ {ρ̄λ}β for

every n ≥ 1 and Ā(y) ∈ X for all y ∈ ρ. This, together with Lemma 5.1.1, implies

that uAn ∈
⟨
ρ̄λ
⟩

and Ān ∈ ρβ for every n ≥ 1, as well as Ā(y) ∈ X for all y ∈ ρ.

Hence, we deduce that uAn ∈
⟨
ρ̄λ
⟩

for every n ≥ 1 and Ā ∈ (ρ,X) which is (3), that

is (2) =⇒ (3). Finally, suppose that (3) is satisfied, that is uAn ∈
⟨
ρ̄λ
⟩

for every n ≥ 1

and Ā ∈ (ρ,X). This implies that uAn ∈
⟨
ρ̄λ
⟩

and Ān ∈ ρβ for every n ≥ 1 as well as

Ā(y) ∈ X for all y ∈ ρ. Hence, it follows by Lemma 5.1.1 that An ∈ {ρ̄λ}β for every

n ≥ 1. Besides, for every x ∈ ρ̄λ, let y = Λ̂(x). Then y ∈ ρ and A(x) = Ā(y) by (5.1.4)

which implies that A(x) ∈ X for all x ∈ ρ̄λ. Therefore, we have An ∈ {ρ̄λ}β for every
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n ≥ 1 and A(x) ∈ X for all x ∈ ρ̄λ. This means that A ∈ (ρ̄λ, X) which is (1), that is

(3) =⇒ (1) and this completes the proof. 2

Theorem 5.1.4 For any sequence space X and every infinite matrix A, the following

statements are equivalent to each others:

(1) A ∈ (csλ, X).

(2) An ∈ {csλ}β for every n ≥ 1, Ā(z) ∈ X for all z ∈ c0 and (ânk)
∞
n=1 ∈ X for every

k ≥ 1.

(3) uAn ∈ ℓ∞ for every n ≥ 1, Ā ∈ (c0, X) and (ânk)
∞
n=1 ∈ X for every k ≥ 1.

(4) A ∈ (csλ0 , X) and (ânk)
∞
n=1 ∈ X for every k ≥ 1.

Proof. The proof of this result is based on (2) of Lemma 5.1.2 with help of (5.1.5) and

Lemma 5.1.4. Also, its proof is exactly same as that of Theorem 5.1.3, above. Thus,

we may omit the details of proof. 2

Now, with help of (4.1.1) and (5.1.1), let’s consider the following conditions:

(
ukank

)∞
k=1

∈ c0 for every n ≥ 1 (5.1.6)

(
ukank

)∞
k=1

∈ ℓ∞ for every n ≥ 1 (5.1.7)∑∞

k=1
|ân,k+1 − ânk| converges for every n ≥ 1 (5.1.8)

sup
n

∑∞

k=1
|ân,k+1 − ânk| < ∞ (5.1.9)

sup
n

∣∣∣ lim
k→∞

ânk

∣∣∣ < ∞ (5.1.10)

lim
n→∞

(ân,k+1 − ânk) = āk exists for every k ≥ 1 (5.1.11)

lim
n→∞

∑∞

k=1
|ân,k+1 − ânk − āk| = 0 (5.1.12)
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lim
n→∞

ânk exists for every k ≥ 1 (5.1.13)

lim
n→∞

∑∞

k=1
|ân,k+1 − ânk| = 0 (5.1.14)

lim
n→∞

(ân,k+1 − ânk) = 0 for every k ≥ 1 (5.1.15)

lim
n→∞

ânk = 0 for every k ≥ 1 (5.1.16)∑∞

n=1
|ânk|p converges for every k ≥ 1 (p ≥ 1) (5.1.17)

sup
K∈K

∞∑
n=1

∣∣∣∑
k∈K

(ân,k+1 − ânk)
∣∣∣p < ∞ for p ≥ 1, (5.1.18)

where K stands for the collection of all non-empty finite subsets of positive integers.

Then, by using Lemma 5.1.1, we find that

An ∈ {bsλ}β for every n ≥ 1 ⇐⇒ (5.1.6) and (5.1.8) are satisfied,

An ∈ {η̄λ}β for every n ≥ 1 ⇐⇒ (5.1.7) and (5.1.8) are satisfied,

where η̄ stands for any of the spaces cs or cs0. Therefore, by using Theorems 5.1.3

and 5.1.4 with help of Lemmas 1.3.8, 1.3.9, 1.3.10 and 1.3.11 which characterize the

matrix operators on the spaces ℓ∞, c and c0 into the classical sequence spaces, we can

immediately deduce the following consequences characterizing matrix operators on the

spaces µ̄λ:

Corollary 5.1.5 For an infinite matrix A, we have the following:

(1) A ∈ (bsλ, ℓ∞) if and only if (5.1.6) and (5.1.9) are satisfied.

(2) A ∈ (csλ0 , ℓ∞) if and only if (5.1.7) and (5.1.9) are satisfied.

(3) A ∈ (csλ, ℓ∞) if and only if (5.1.7), (5.1.9) and (5.1.10) are satisfied.

Proof. It follows from Theorems 5.1.3 and 5.1.4, since Ā ∈ (µ, ℓ∞) ⇐⇒ (5.1.9) held

(note that (5.1.9) implies that (
∑∞

j=kānj)
∞
n=1 ∈ ℓ∞. Thus (5.1.10) ⇐⇒ (ânk)

∞
n=1 ∈ ℓ∞

for every k ≥ 1, since
∑∞

j=kānj = ân − ânk for all n and k). 2
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Corollary 5.1.6 For an infinite matrix A, we have the following:

(1) A ∈ (bsλ, c) if and only if (5.1.6), (5.1.9), (5.1.11) and (5.1.12) are satisfied.

Further, if A ∈ (bsλ, c); then limn→∞An(x) =
∑∞

k=1 ākyk for every x ∈ bsλ, where

y = Λ̂(x) and āk = limn→∞(ân,k+1 − ânk) for all k.

(2) A ∈ (csλ0 , c) if and only if (5.1.7), (5.1.9) and (5.1.11) are satisfied. Moreover, if

A ∈ (csλ0 , c); then limn→∞ An(x) =
∑∞

k=1 ākyk for every x ∈ csλ0 , where y = Λ̂(x) and

āk = limn→∞(ân,k+1 − ânk) for all k.

(3) A ∈ (csλ, c) if and only if (5.1.7), (5.1.9) and (5.1.13) are satisfied. Further, if

A ∈ (csλ, c); then limn→∞An(x) =
∑∞

k=1 ākyk − L(â0 +
∑∞

k=1 āk) for every x ∈ csλ,

where y = Λ̂(x), L = limk→∞ yk, â0 = limn→∞ ân1 and āk = limn→∞(ân,k+1 − ânk) for

all k.

Proof. It is immediate by noting that: (1) Ā ∈ (ℓ∞, c) ⇐⇒ (5.1.9), (5.1.11) and

(5.1.12) are satisfied. (2) Ā ∈ (c0, c) ⇐⇒ (5.1.9) and (5.1.11) are satisfied. 2

Corollary 5.1.7 For an infinite matrix A, we have the following:

(1) A ∈ (bsλ, c0) if and only if (5.1.6) and (5.1.14) are satisfied.

(2) A ∈ (csλ0 , c0) if and only if (5.1.7), (5.1.9) and (5.1.15) are satisfied.

(3) A ∈ (csλ, c0) if and only if (5.1.7), (5.1.9) and (5.1.16) are satisfied.

Proof. It is obtained by observing that: (1) Ā ∈ (ℓ∞, c0) ⇐⇒ (5.1.14) is satisfied.

(2) Ā ∈ (c0, c0) ⇐⇒ (5.1.9) and (5.1.15) held. 2

Corollary 5.1.8 Let A be an infinite matrix. Then, for every real p ≥ 1, we have:

(1) A ∈ (bsλ, ℓp) if and only if (5.1.6), (5.1.8) and (5.1.18) are satisfied.
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(2) A ∈ (csλ0 , ℓp) if and only if (5.1.7), (5.1.8) and (5.1.18) are satisfied.

(3) A ∈ (csλ, ℓp) if and only if (5.1.7), (5.1.8), (5.1.17) and (5.1.18) are satisfied.

Proof. It is immediate by means of the fact: Ā ∈ (µ, ℓp) ⇐⇒ (5.1.18) holds. 2

It is worth mentioning that (5.1.6) implies limk→∞ ânk = 0 for all n (see Remark

4.3.1) and so implies all of (5.1.7) and (5.1.10). Further, in light of Remark 4.3.6,

it must be noted that Corollaries 5.1.5, 5.1.6, 5.1.7 and 5.1.8 can be reduced, with

assumption u = e (i.e. uk = 1 for all k ≥ 1), to characterize matrix operators on the

sequence spaces µ̄ = bs, cs and cs0 as follows:

Remark 5.1.9 The necessary and sufficient conditions for an infinite matrix A in order

to belong to any of the classes (µ̄, ℓ∞), (µ̄, c), (µ̄, c0) or (µ̄, ℓp) are those conditions given

respectively in Corollaries 5.1.5, 5.1.6, 5.1.7 or 5.1.8 by removing condition (5.1.7) and

taking uk = 1 and ânk = −ank for all n, k ≥ 1, where p ≥ 1. For example, let uk = 1

in (3) of Corollaries 5.1.5, 5.1.6 and 5.1.7, we respectively obtain that

A ∈ (cs, ℓ∞) ⇐⇒ sup
n

∣∣∣ lim
k→∞

ank

∣∣∣ < ∞ and sup
n

∑∞

k=1
|ank − an,k+1| < ∞,

A ∈ (cs, c) ⇐⇒ sup
n

∑∞

k=1
|ank − an,k+1| < ∞ and lim

n→∞
ank exists for every k ≥ 1,

A ∈ (cs, c0) ⇐⇒ sup
n

∑∞

k=1
|ank − an,k+1| < ∞ and lim

n→∞
ank = 0 for every k ≥ 1

which coincide with the familiar results in [58] (see also Lemma 1.3.14).

5.2 Matrix Operators into µ̄λ

In this section, we conclude the necessary and sufficient conditions for an infinite

matrix A to act from any sequence space into the λ-sequence spaces µ̄λ.

For this, we will apply the useful result in part (3) of Lemma 1.3.7 to our new

spaces µ̄λ. This leads us to the following theorem:
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Theorem 5.2.1 Let X be a sequence space, A an infinite matrix and define the matrix

B = [bnk] by

bnk =
∑n

j=1

(∑n

i=j

1

λi

)
∆(λj) ajk (n, k ≥ 1).

A ∈ (X, µ̄λ) if and only if B ∈ (X,µ), where µ̄ stands for any of the spaces cs0, cs or

bs, and µ stands for the respective one of the spaces c0, c or ℓ∞.

Proof. This result is immediate by (3) of Lemma 1.3.7, where B = Λ̂A. 2

In particular, if X, in above theorem, is any of the classical sequence spaces; then

we obtain the following corollary:

Corollary 5.2.2 Let A be an infinite matrix and define the matrix B = [bnk] by

bnk =
∑n

j=1

(∑n

i=j

1

λi

)
∆(λj) ajk (n, k ≥ 1).

Then A belongs to any one of the classes (c0, µ̄
λ), (c, µ̄λ), (ℓ∞, µ̄λ) or (ℓp, µ̄

λ) if and

only if B belongs to the respective one of the classes (c0, µ), (c, µ), (ℓ∞, µ) or (ℓp, µ),

where p ≥ 1 and µ stands for any of the spaces c0, c or ℓ∞.

More precisely, by using Lemmas 1.3.9, 1.3.10, 1.3.11 and 1.3.12 characterizing

matrix classes (c0, µ), (c, µ), (ℓ∞, µ) or (ℓp, µ), where 1 ≤ p < ∞, we conclude the

conditions:

sup
n

∑∞

k=1
|bnk| < ∞ (5.2.1)

lim
n→∞

bnk = bk exists for every k ≥ 1 (5.2.2)

lim
n→∞

∑∞

k=1
|bnk − bk| = 0 (5.2.3)

lim
n→∞

∑∞

k=1
bnk exists (5.2.4)
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lim
n→∞

∑∞

k=1
|bnk| = 0 (5.2.5)

lim
n→∞

bnk = 0 for every k ≥ 1 (5.2.6)

lim
n→∞

∑∞

k=1
bnk = 0 (5.2.7)

sup
n, k

|bnk| < ∞ (5.2.8)

sup
n

∑∞

k=1
|bnk|q < ∞ ( q = p/(p− 1) ). (5.2.9)

Now, with help of Lemmas 1.3.9, 1.3.10, 1.3.11 and 1.3.12, we immediately deduce

the following corollaries in which B = [bnk] is as given in Corollary 5.2.2.

Corollary 5.2.3 We have (c0, bs
λ) = (c, bsλ) = (ℓ∞, bsλ), and A ∈ (µ, bsλ) if and only

if (5.2.1) holds.

Corollary 5.2.4 We have the following:

(1) A ∈ (ℓ∞, csλ) if and only if (5.2.1), (5.2.2) and (5.2.3) hold.

(2) A ∈ (c, csλ) if and only if (5.2.1), (5.2.2) and (5.2.4) hold.

(3) A ∈ (c0, cs
λ) if and only if (5.2.1) and (5.2.2) hold.

Corollary 5.2.5 We have the following:

(1) A ∈ (ℓ∞, csλ0) if and only if (5.2.5) holds.

(2) A ∈ (c, csλ0) if and only if (5.2.1), (5.2.6) and (5.2.7) hold.

(3) A ∈ (c0, cs
λ
0) if and only if (5.2.1) and (5.2.6) hold.

Corollary 5.2.6 We have the following:

(1) A ∈ (ℓ1, bs
λ) if and only if (5.2.8) holds.

(2) A ∈ (ℓ1, cs
λ) if and only if (5.2.2) and (5.2.8) hold.

(3) A ∈ (ℓ1, cs
λ
0) if and only if (5.2.6) and (5.2.8) hold.
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Corollary 5.2.7 Let 1 < p < ∞ and q = p/(p− 1). Then, we have the following:

(1) A ∈ (ℓp, bs
λ) if and only if (5.2.9) holds.

(2) A ∈ (ℓp, cs
λ) if and only if (5.2.2) and (5.2.9) hold.

(3) A ∈ (ℓp, cs
λ
0) if and only if (5.2.6) and (5.2.9) hold.

5.3 Particular Cases

In this final section, we apply our results to some particular cases. Also, we

conclude the necessary and sufficient conditions for an infinite matrix A to act between

our new spaces.

For this, we will apply (3) of Lemma 1.3.7 to our results in previous section in

order to characterize the matrix operators acting from µ̄λ into the matrix domains of

triangles. For instance, we have cs0 = (c0)σ, cs = (c)σ, bs = (ℓ∞)σ, c0(∆) = (c0)∆,

c(∆) = (c)∆, ℓ∞(∆) = (ℓ∞)∆ and bvp = (ℓp)∆ for p ≥ 1. Therefore, we conclude the

following consequences:

Corollary 5.3.1 Let A be an infinite matrix and define the matrices [bnk] and [b̂nk] by

bnk = ank − an−1, k and b̂nk = uk+1bn,k+1 − ukbnk − bn,k+1 (n, k ≥ 1).

Then, the necessary and sufficient conditions in order that A belongs to any one of

the classes (µ̄λ, ℓ∞(∆)), (µ̄λ, c(∆)), (µ̄λ, c0(∆)) or (µ̄λ, bvp) are those conditions given

respectively in Corollaries 5.1.5, 5.1.6, 5.1.7 or 5.1.8 provided that the entries ank and

ânk are respectively replaced by bnk and b̂nk for all n, k ≥ 1, where p ≥ 1.

Corollary 5.3.2 Let A be an infinite matrix and define the matrices [bnk] and [b̂nk] by

bnk =
∑n

j=1
ajk and b̂nk = uk+1bn,k+1 − ukbnk − bn,k+1 (n, k ≥ 1).
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Then, the necessary and sufficient conditions in order that A belongs to any one of the

classes (µ̄λ, bs), (µ̄λ, cs) or (µ̄λ, cs0) are those conditions given respectively in Corollaries

5.1.5, 5.1.6 or 5.1.7 provided that the entries ank and ânk are respectively replaced by

bnk and b̂nk for all n, k ≥ 1.

Finally, we end our work with the following corollaries characterizing matrix operators

between our spaces of λ-type. For this, let λ′ = (λ′
k) be a strictly increasing sequence of

positive reals (λ and λ′ need not be equal). Then µ̄λ′
= (µ)Λ′ , where Λ′ is the triangle

defined by (2.2.4) with λ′ instead of λ. Then, we deduce the following:

Corollary 5.3.3 Let A be an infinite matrix and define the matrices [bnk] and [b̂nk] by

bnk =
∑n

j=1

(∑n

i=j

1

λ′
i

)
∆(λ′

j) ajk (n, k ≥ 1),

b̂nk = uk+1bn,k+1 − ukbnk − bn,k+1 (n, k ≥ 1).

Then, the necessary and sufficient conditions in order that A belongs to any one of

the classes (µ̄λ, bsλ
′
), (µ̄λ, csλ

′
) or (µ̄λ, csλ

′
0 ) are those conditions given respectively in

Corollaries 5.1.5, 5.1.6 or 5.1.7 provided that ank and ânk are respectively replaced by

bnk and b̂nk for all n, k ≥ 1.

Corollary 5.3.4 Let A be an infinite matrix and define the matrices [bnk] and [b̂nk] by

bnk =
1

λ′
n

∑n

j=1
∆(λ′

j) ajk and b̂nk = uk+1bn,k+1 − ukbnk − bn,k+1 (n, k ≥ 1).

Then, the necessary and sufficient conditions in order that A belongs to any one of the

classes (µ̄λ, ℓλ
′

∞), (µ̄λ, cλ
′
), (µ̄λ, cλ

′
0 ) or (µ̄λ, ℓλ

′
p ) are those conditions given respectively in

Corollaries 5.1.5, 5.1.6, 5.1.7 or 5.1.8 provided that ank and ânk are respectively replaced

by bnk and b̂nk for all n, k ≥ 1, where 1 ≤ p < ∞.
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CONCLUSION



CONCLUSION

The new λ-sequence spaces of bounded, convergent and null series have been intro-

duced, their isomorphic, algebraic and topological properties have been studied, their

inclusion relations have been established, their Schauder bases and Köthe-Toeplitz dual

spaces have been constructed and their matrix operators have been characterized. This

gives an open scope and a new area for additional future research studies. For instance,

the study of compact operators and some fixed point theorems on our new spaces (see

[8, 44, 45] for such studies) and study some spectral theorems (see [8, 47] for such

studies) with some applications in differential equations and numerical analysis (see

[8, 13] for similar studies).

At the end of this thesis, I suggest the researchers to continue in study of our new

sequence spaces and their matrix transformations to solve many open problems still

left and in need to study.
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LIST OF SYMBOLS

K the scalar field R or C

n, k positive integers

x, y sequences

xk k-term of x

∆(x) difference sequence of x

σ(x) sum sequence of x

w the space of all sequences

X,Y sequence spaces

∥ · ∥ norm

Xθ Köthe-Toeplitz duals of X

Xα α-dual of X

Xβ β-dual of X

Xγ γ-dual of X

A,B matrices

ank entries of A

A(x) A-transform of x

∆ band matrix of difference

σ sum matrix

(X,Y ) matrix class

XA matrix domain of A in X
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λ λ-sequence

Λ λ-matrix

Λ̂ λ̂-matrix

Xλ λ-sequence space

ℓ∞ space of bounded sequences

c space of convergent sequences

c0 space of null sequences

ℓp space of sequences associated with p-absolutely convergent series

bvp space of sequences with p-bounded variation

ℓ∞(∆) space of bounded difference sequences

c(∆) space of convergent difference sequences

c0(∆) space of null difference sequences

bs space of sequences associated with bounded series

cs space of sequences associated with convergent series

cs0 space of sequences associated with null series

bsλ λ-sequence space of bounded series

csλ λ-sequence space of convergent series

csλ0 λ-sequence space of null series

µ the space c0, c or ℓ∞

µ̄ the space cs0, cs or bs

µ̄λ the space csλ0 , csλ or bsλ

ρ the space c0 or ℓ∞

ρ̄ the space cs0 or bs

ρ̄λ the space csλ0 or bsλ

80



REFERENCES



References

[1] N. Ahmad and A.H. Ganie, On the spaces of λ-convergent sequences and almost

convergent, Thai J. Math., 11(2) (2013), 393–398.

[2] B. Altay and F. Başar, Some Euler sequence spaces of non-absolute type, Ukrainian

Math. J., 57(1) (2005), 1–17.

[3] B. Altay, F. Başar and M. Mursaleen, On the Euler sequence spaces which include

the spaces ℓp and ℓ∞ I, Inform. Sci., 176(10) (2006), 1450–1462.

[4] C. Aydın and F. Başar, On the new sequence spaces which include the spces c and

c0, Hokkaido Math. J., 33(2) (2004), 383–398.

[5] C. Aydın and F. Başar, Some new difference sequence spaces, Appl. Math. Com-

put., 157(3) (2004), 677–693.

[6] C. Aydın and F. Başar, Some new sequence spaces which include the spaces ℓp and

ℓ∞, Demon. Math., 38(3) (2005), 641–656.

[7] S. Aydin and H. Polat, Some Pascal sequence spaces, Fund. J. Math. Appl., 1

(2018), 61–68.

[8] J. Banaś and M. Mursaleen, Sequence Spaces and Measures of Noncompactness

with Applications to Differential and Integeral Equations, Springer Sci. Publishers,

New Delhi, London, New York, 2014.

[9] F. Başer and B. Altay, On sequence spaces of p-bounded varition and related matrix

mappings, Ukrainian Math. J., 55(1) (2003), 136–147.

81



[10] M. Başarır, On some new sequence spaces and related matrix transformations,

Indian J. Pure Appl. Math., 26(10) (1995), 1003–1010.

[11] M.C. Bişgin and A. Sönmez, Two new sequence spaces generated by the composition

of mth order generalized difference matrix and lambda matrix, J. Ineq. Appl., 14

(2014), 1–20.

[12] M.C. Bişgin, The binomial sequence spaces which include the spaces ℓp and ℓ∞ and

geometric properties, J. Ineq. Appl., 304 (2016), 1–15.

[13] J. Boos, Classical and Modern Methods in Summability, Oxford University Press,

New York, 2000.

[14] N.L. Braha and F. Başar, On the domain of the triangle A(λ) on the spaces of

null, convergent and bounded sequences, Abst. Appl. Anal., 13 (2013), 1–9.

[15] B. Choudhary and S. Nanda, Functional Analysis with Applications, John Wiley

& Sons Inc., New Delhi, 1989.

[16] S. Demiriz and S. Erdem, Domain of Euler-totient matrix operator in the Space

ℓp, Korean J. Math., 28(2) (2020), 361–378.

[17] S. Ercan and Ç.A. Bektaş, On some sequence spaces of non-absolute type, Krag.

J. Math., 38(1) (2014), 195–202.

[18] A.H. Ganie and A. Antesar, Certain sequence spaces, Adv. Stud. Comt. Mat.,

30(1) (2020), 17–27.

[19] A.H. Ganie and N.A. Sheikh, On some new sequence spaces of non-absolute type

and matrix transformations, J. Egyptian Math. Soc., 21 (2013), 108–114.

82



[20] A.H. Ganie and others, Generalized difference sequence space of non-absolute type,

J. Sci. Data Anal., 2(1) (2020), 147–153.

[21] D.J. Garling, The α- and β-duality of sequence spaces, Proc. Camb. Phil. Soc.,

63(3) (1967), 963–981.

[22] H. Hazar and M. Sarıgöl, On absolute Nörlund spaces and matrix operators, Acta

Math. Sin., ES, 34(5) (2018), 812–826.

[23] M. İlkhan, A new conservative matrix derived by Catalan numbers and its matrix

domain in the spaces c and c0, Linear Mult. Algeb., 17(1) (2020), 1–10.

[24] M. İlkhan, Matrix domain of a regular matrix derived by Euler totient function in

the spaces c0 and c, Medit. J. Math., 68(2) (2020), 417–434.

[25] M. İlkhan, N. Şimşek and E. Kara, A new regular infinite matrix defined by Jordan

totient function and its matrix domain in ℓp, Math. Meth. Appl. Sci., 44(9) (2020),

7622–7633.

[26] E. Kara and M. İlkhan, On some Banach sequence spaces derived by a new band

matrix, British J. Math.Comput. Sci., 9(2) (2015), 141–159.

[27] V. Karakaya, N. Şimşek and K. Dogan, New matrix domain derived by the matrix

product, Filomat, 30(5) (2016), 1233–1241.

[28] M. Kiriçi and F. Başar, Some new sequence spaces derived by the domain of

generalized difference matrix, Appl. Math. Comput., 60 (2010), 1299–1309.

[29] H. Kızmaz, On certain sequence spaces I, Canad. Math. Bull., 25(2) (1981), 169–

176.

83



[30] H. Kızmaz, On certain sequence spaces II, Inter. J. Math. Math. Sci., 18(2) (1995),

721–724.

[31] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley &

Sons, New York, London, 1978.

[32] I.J. Maddox, Elements of Functional Analysis, The University Press, 2st ed., Cam-

bridge, 1988.

[33] E. Malkowsky, Recent results in the theory of matrix transformations in sequence

spaces, Mat. Vesnik, 49 (1997), 187–196.

[34] E. Malkowsky and V. Rakočević, On matrix domains of triangles, Appl. Math.

Comput., 189(2) (2007), 1146–1163.

[35] E. Malkowsky and E. Savaş, Matrix transformations between sequence spaces of

generalized weighted means , Appl. Math. Comput., 147(2) (2008), 333–345.

[36] J. Meng and L. Mei, The matrix domain and the spectra of generalized difference

operator, J. Math. Anal. Appl., 470(2) (2019), 1095–1107.

[37] J. Meng and M. Song, On some binomial difference sequence spaces, Kyun. Math.

J., 57 (2017), 631–640.

[38] M. Mursaleen, F. Başar and B. Altay, On the Euler sequence spaces which include

the spaces ℓp and ℓ∞ II, Nonlinear Anal. TMA, 65(3) (2006), 707–717.

[39] M. Mursaleen and A.K. Noman, On the space of λ-convergent and bounded se-

quences, Thai J. Math. Comput., 8(2) (2010), 311–329.

[40] M. Mursaleen and A.K. Noman, On some new difference sequence spaces of non-

absolute type, Math. Comput. Model., 52 (2010), 603–617.

84



[41] M. Mursaleen and A.K. Noman, On some new sequence spaces of non-absolute

type related to the spaces ℓp and ℓ∞ I, Filomat, 25(2) (2011), 33–51.

[42] M. Mursaleen and A.K. Noman, On some new sequence spaces of non-absolute

type related to the spaces ℓp and ℓ∞ II, Math. Commun., 16(2)(2011), 383–398.

[43] M. Mursaleen and A.K. Noman, On generalized means and some related sequence

spaces, Comput. Math. Appl., 61(4) (2011), 988–999.

[44] M. Mursaleen and A.K. Noman, Compactness of matrix operators on some new

difference sequence spaces, Linear Algebra Appl., 436(1) (2012), 41–52.

[45] M. Mursaleen and A.K. Noman, Hausdorff measure of noncompactness of certain

matrix operators on the sequence spaces of generalized means, J. Math. Anal.

Appl., 417 (2014), 96–111.

[46] P.-N. Ng and P.-Y. Lee, Cesàro sequence spaces of non-absolute type, Comment.

Math. Prace Mat., 20(2) (1978), 429–433.

[47] A.K. Noman, Infinite Matrices and Compact Operators on Sequence Spaces, Lam-

bert Academic Publishing, Sarrbrücken, 2011.

[48] A.K. Noman and E.S. Alyari, New general results on matrix domains of triangles

in sequence spaces, Albaydha Univ. J., 3(2) (2021), 57–73.

[49] A.K. Noman and E.S. Alyari, Matrix operators on the new λ-sequence spaces of

bounded and convergent series, Global Sci. J., 10(2) (2022), 1200–1217.

[50] H. Polat, Some Pascal spaces of difference sequences spaces of order m, Conf.

Proc. Sci. Tech., 2(1) (2019), 97–103.

85



[51] S. Ponnusamy, Foundations of Mathematical Analysis, Pirkhäuser, Springer Sci.

Publishers, New York, London, 2012.

[52] K. Raj, R. Anand and S. Jamwal, Some double λ-convergent sequence spaces over

n-normed spaces , Australian J. Math. Anal. Appl., 12(1) (2015), 1–16.
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 الةــص الرســملخ         

 

 

 λقذمنا تعشيفاً لبعض الفضاءاث الجذيذة للمتتالياث راث النمط  الشسالت, في هزه

المتسلسلاث المحذودة  ورلك بىاسطت الفضاءاث الكلاسيكيت للمتتالياث راث

الجبشيت والتىبىلىجيت لتلك الفضاءاث قمنا بذساست الخىاص  أيضاً, والمتقاسبت.

بعض  استنتجنا كزلك, الجذيذة مع علاقاتها الآيزومىسفيت وقىاعذ شاودس لها.

. المتعلقت بتلك الفضاءاث الجذيذة وأوجذنا فضاءاتها الثانىيت الاحتىاءعلاقاث 

اث المصفىفيت أثبتنا عذد من النتائج الجذيذة لتىصيف المؤثشبالإضافت إلى رلك, 

علاوةً  التي تؤثش بينها. اث المصفىفيتالمؤثشكزلك تؤثش على فضاءاتنا و تيلا

على رلك, قمنا بمناقشت العذيذ من الحالاث الخاصت لبعض النتائج الأساسيت 

 الهامت. الاستنتاجاثوحصلنا على عذد من 
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