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ABSTRACT

In the present thesis, we have introduced some new sequence spaces of A-type by means
of the classical sequence spaces of bounded and convergent series. Also, we have studied
the algebraic and topological properties of our new spaces with their Schauder bases
and isomorphic relations. Further, we have deduced some inclusion relations concerning
our new spaces and obtained their dual spaces. Moreover, we have concluded some new
results characterizing certain classes of matrix operators acting on our spaces and the
matrix operators acting into and between those spaces. Furthermore, many important

and new facts have been obtained and discussed as particular cases of our results.



PREFACE

In modern analysis, the subject matter of functional analysis includes the study
of abstract spaces, operators and transformations of these spaces, which provides a
general framework for finding solutions of various problems in applied mathematics
and physics. Above all, a study of functional analysis in itself provides new insight and
understanding into the processes and techniques of elementary analysis which we are
accustomed to use in our everyday calculations.

One of the most general types of abstract spaces is that type of spaces with infinite-
dimensions and the sequence spaces are the most important spaces of this type. So,
many mathematicians have done a lot of work in this field of sequence spaces and
studied their matrix transformations which have been applied in all other areas of
mathematics. Thus, we have chosen this field for study and research.

In the present thesis, our contribution is to introduce some new sequence spaces
and study their topological properties, Schauder bases, inclusion relations, dual spaces
and certain classes of matrix operators on our new sequence spaces. For more utility,
we hope for the reader’s familiarity with the basic concepts of our subject. Thus, for
further knowledge in our notions, we refer the reader to [51] for basic idea of sequences
and series, to [15, 31] for elementary concepts of functional analysis, to [13, 32, 61] for
the notions of sequence spaces and to [47] for the particular sequence spaces of A-type.

My thesis is divided into five chapters and the main results in the last four chapters
have been published in two research papers as mentioned at the beginning of each
chapter which have been presented in the 2nd conference of Albaydha University (2021).

The materials of this exposition are organized as follows:
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Chapter 1 is an introductory chapter to display the historical and theoretical
background of our subject concerning the theory of sequence spaces and their matrix
transformations with a short survey on some basic definitions, notations and prelimi-
nary results which are already known in the literature of this field.

In Chapter 2, we have introduced the new A-sequence spaces of bounded, conver-
gent and null series, and studied their isomorphic, algebraic and topological properties
with contracting their Schauder bases.

Chapter 3 is devoted to derive some interesting inclusion relations between our
new spaces and the classical sequence spaces, and some particular cases of equalities
and strict inclusions will be discussed with important examples.

In Chapter 4, we have concluded the Kothe-Toeplitz duals of our new A-sequence
spaces defined in terms of series.

Chapter 5 is devoted to characterize the related classes of matrix operators acting
on our new spaces and the matrix operators acting into and between those spaces, and
some known or new results will be deduced as particular cases.

The obtained facts are those remarks, examples, lemmas or theorems, which are
presented throughout this thesis as paragraphs and every paragraph is associated with
triple decimal numbering. The first number indicates the chapter, the second represents
the section, and the third refers to the number of current paragraph. For example, the
form 3.2.1 refers to the first paragraph (remark, example, lemma or theorem) appearing
in Section 2 of Chapter 3.

At the end of this monograph, we have given an exhaustive list of relevant ref-
erences to the literature presented in this thesis. All results stated without proof are

cited and can be found in the references given either before or after the statements.
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Chapter 1
INTRODUCTION




1 INTRODUCTION

The theory of sequence spaces and matrix transformations is an interesting area for
research in summability theory as a part of functional analysis. In this first chapter,
we display a historical and theoretical background of our subject concerning the theory
of sequence spaces and their matrix transformations with a short survey on some basic
definitions, notations and preliminary results which are already known in the litera-
ture of this field. This introductory chapter is divided into three sections, the first is
devoted to the theoretical frame, the second is for the research methodology and the

last is to present some preliminary results which will be needed in the sequel.

1.1 Theoretical Frame

In this section, we display a historical background for the theory of sequence spaces
and matrix transformations, and we give a short survey on some basic concepts of this

area with certain previous studies.

1.1.1 Historical Background

Von Neumann began the analysis of the frame work of quantum mechanics in the
years following 1926 but there were few attempts to study the structure of specific
quantum systems (exceptions would be some of the work of Frechet and Rollick). This
situation changed in the early 1950’s when Kato proved the self adjointness of atomic
Hamiltonians and Garding and Wightman formulated the axioms for quantum field

theory. These events demonstrated the usefulness of functional analysis.



Functional analysis was founded by S. Banach, M. Fréchet, H. Hahn, F. Hausdorff,
D. Hilbert, F. Riesz and others. These names have become synonymous with the
tools of this subject. Such tools have turned out to be powerful and widely used in
several areas of functional analysis, especially in summability theory which encompasses
a variety of fields and has many applications in various subjects. For instance, in
numerical analysis, approximation theory, operator theory and the theory of differential
equations and orthogonal series with their special functions. The summability theory
has been originated from the attempts made by the mathematicians to give limits to
the divergent sequences and series [32].

In particular, the theory of sequence spaces and matrix transformations is a signif-
icant area of research in summability theory and so many mathematicians have done
a lot of work in this field. In fact, the most important methods of summability are
given by infinite matrices and their matrix transformations. So that, our concern is
with those infinite matrices that map a sequence space into another one. Such matrices
arise naturally from the infinite-dimensions of sequence spaces [34].

But, why we should study matrix operators and transformations between sequence
spaces; why not study the general linear operators? The reason is that, in many
important cases, the most general linear operators acting between sequence spaces are
actually determined by infinite matrices. So, there is no loss of generality in such study.
Moreover, there is often a gain in that specific conditions on the entries of an infinite
matrix which may be easy to verify.

The interest in matrix transformations was stimulated by special results in the
summability theory which were obtained by E. Cesaro, L. Euler, N. Norlund, F. Riesz

and others. The earliest idea of summability were perhaps contained in a letter written



by Leibnitz to C. Wolf in 1713, the sum of the oscillatory series 1 — 1+ 1 — ---
as given by Leibnitz was in 1880. After that, Frobenius introduced the method of
summability by arithmetic mean which has later been generalized by Cesaro in 1890 as
the (C, o) method of summability. With the emergence of functional analysis, sequence
spaces were studied with greater insight and motivation and the earliest applications
of functional analysis to summability was made by S. Banach, H. Hahn, S. Mazur, G.
Ko6the and O. Toeplitz. In 1911, the celebrated mathematician Toeplitz determined
the necessary and sufficient conditions for an infinite matrix to be regular, that is,
he characterized those conservative matrices that preserve the limits invariant. In
fact, Toeplitz was the first person who studies the summability methods as a class of
operators defined on sequences by infinite matrices. It was followed by the works done
by I. Schur, W. Orlicz, K. Knopp, G. Petersen, H. Nakano, S. Simons, G. Lorentz, G.
Hardy, A. Wilansky, I. Maddox, W. Sargent, C. Lascarides, S. Nanda, D. Rath, G.
Das, Z. Ahmed, H. Kizmaz B. Kuttner and many others like Russell and Rhoade [14].

After many years, exactly in 1950, Robinson initiated the study of summability by
infinite matrices of linear operators on normed linear spaces which enabled the workers
on summability to extend their results. Also, in 1951, the famous mathematician K.
Zeller introduced the concept of BK spaces* which have proved its useful in summa-
bility theory, especially in the characterizations of matrix transformations between
sequence spaces, and the most important result is that matrix operators between BK
spaces are continuous [61].

The sequence spaces were motivated by problems in Fourier series, power series

and systems of equations with infinitely many variables, and the theory of sequence

*The letters B and K stand for Banach and the German word Koordinate which means ‘coordi-
nate’ as in the Zeller’s terminology.



spaces and infinite matrices occupies a very prominent position in several branches of
analysis and plays an important role in various fields of Mathematics as a powerful and
pervading tool in almost all these branches with several important applications. For
example, in the structural theory of topological vector spaces, Schauder basis theory
and theory of differential equations and special functions [8].

Recently, the sequence spaces have been generalized in several directions by many
mathematicians and some of them introduce new sequence spaces and study their var-
ious properties. At the present time, a lot of work have been done by many researchers
around the world, like Boos, Rakocevié¢, Malkowsky, Savas, Basar, Altay, Mursaleen,
Noman, Karakaya, Kirigi, Kara, Polat and many others, only a few was named (e.g.,

see [4, 5, 6, 10, 11, 16, 18, 20, 22, 23, 24, 25, 26, 27, 36, 47, 53, 55, 63, 64]).

1.1.2 Basic Concepts and Notations

Here, we give a short survey on the basic definitions, concepts and notions which
are the elementary tools in the theory of sequence spaces and matrix transformations.
Also, we will define our common notations which are usually used by all authors and
researchers in this area. Thus, our terminologies, as given here, will have the same
meanings throughout this thesis (unless stated otherwise).

Let K be the scalar field (of real or complex numbers), that is K = R or C, and so
our scalars are either real or complex numbers (according to the case of our spaces).
Also, we will use the symbols k& and n to be positive integers while p, ¢ > 1 are reals.

By the word ”sequence”, we mean an infinite sequence of real or complex terms, and

if © = (z1, 22,23, ) is a real or complex sequence; then we denote it by = = (x),-,
or simply x = (=zy), where xj is called the k-th term of z. Further, we shall use



the following conventions: the first is that any term with a non-positive subscript
is assumed to be nothing (e.g., the terms zy and z_; have no meaning and can be
considered to be not exist). Next, we will frequently use the sequences e = (1,1,1,...)
and e;, for each k > 1, where ¢, is the sequence whose only one non-zero term which is
1 in the k-th place for each k£ > 1, that is e; = (1,0,0,---), e2 = (0,1,0,0,---),-- - etc.
Also, the absolute value of a sequence z and its positive power are defined by means
of their meanings for its scalar-terms, that is |x| = (|zx|) and |z|" = (|zx|") for any
real » > 0. The last conventions are concerning with some algebraic operations defined
on sequences, namely the coordinate-wise addition, scalar multiplication, product and
division. More precisely, if x = (x;) and y = (yx) are sequences and a € K is a
scalar; then x +y = (2 £ i), ax = (axy), vy = (zryx) and if y, # 0 for all k; then
z/y = (zr/ye) and 1/y = (1/ys).

Together with any sequence = (zy,), there always exist two sequences, namely

the difference sequence A(zx) and the sum sequence o(x), where
Ax) = (x1,29 — 21,23 — Tg, - -+ ) and o(x) = (x1, 21 + X9, T + To + T3, -+ ).

That is A(x) = (Aze) )72y = (2 — 25132, and o(z) = (ox(@) )32, = (o425 )7
which leads us to write their terms as follows:
k
or(x) = ij and A(xg) =z — 251 with A(zy) =2 (k>1). (1.1.1)
j=1
The sequence z = (xy,) is said to be bounded if there exists a positive real M > 0 such
that |xx| < M for all £ > 1, that is = is bounded if and only if sup,, |zx| < oo, where
the supremum of || is taken over all positive integers k. Also, the sequence x is said
to be convergent if its limit lim,_,. ) exists. In particular, by a null sequence, we

mean a convergent sequence which converges to zero, i.e. limy_,, xx = 0.



Every sequence x = (z}) is associated with a series Y -, z; whose terms are
exactly those of = and so it has the same sequence of partial sum which is o(z). Thus,
it seems to be quite natural to similarly say that ) ;- zx is a null, convergent or
bounded series if its sequence of partial sum o(x) is a null, convergent or bounded
sequence, respectively. That is, the series Y ;- xy is bounded if sup,, | > r_, zx| < oo,
and it is convergent if lim,, ZZ=1 xy, exists. Also, by a null series, we mean a series
which converges to zero, i.e. lim, oo > ,_, & = 0 which yields that >~ @, = 0.

A series Y 2 | xy, is said to be absolutely convergent if the series >, |)| converges
and we denote it by >~ || < oo (it is well-known that absolute convergence of series
implies their convergent, but the converse is not). In general, for any real p > 1, the
series > -, wy is said to be p-absolutely convergent if >~ | |x|P < oo.

A sequence x = (xy) is said to be of bounded variation if > ;- | |rg — 1] < 00
or equivalently > 77, |A(xy)| < co. In general, for any real p > 1, we say that x is of
p-bounded variation if Y7 | |z — xp_1|P < 0o or Y, |A(xg) [P < oo [9].

By w, we denote the linear space of all (real or complex) sequences over the
scalar field K (with coordinate-wise addition and scalar multiplication) and any vector
subspace of w is called a sequence space. Throughout, we shall write /.., ¢ and ¢y for
the sequence spaces of all bounded, convergent and null sequences, respectively. Also,
for each real 1 < p < 0o, the sequence space ¢, is consisting of all sequences associated
with p-absolutely convergent series. These sequence spaces are known as the classical
sequence spaces [34]. Further, we write bs, cs and csg for the spaces of all sequences
associated with bounded, convergent and null series, respectively. Moreover, by £, (A),
¢(A) and ¢o(A), we stand for the difference spaces of bounded, convergent and null

difference sequences, respectively. Furthermore, for each real 1 < p < 0o, we denote



the space of all sequences of p-bounded variation by bv,. That is, we have:
co = {x = (x) € w: limy o0 T = 0},
c= {x = (zx) € w: limyg_y0o g exists},
loo = {z = (zk) € w: supy |z;] < o0},
ly=Az=(zx) €w: > g, |m]’ <0} (1<p<o0),
csp = {:c = (xp) €w: im0 Y p g @ = O},
cs = {x = (xg) € w: limy, oo Yy py Ty exists},
bs = {z = (z)) €Ew: sup, | > p_, 4| < 0},
co(A) = {x = (zx) € w: limyoo(Tp — Tp—1) = 0},
o(A) = {z = (z1) € w: limy_yo0(x — 24-1) exists},
loo(A) = {& = (x1) € w: supy |z — 24| < 00},
b, ={z=(zx) €Ew: > o |op —zpafP < oo} (1< p<o0),

and we define the sequence space bvg by bvg = co N by [34].

A normed sequence space is of course a sequence space X equipped with a norm
| - || defined on X as a mapping || - || : X — R such that ||z]| > 0, x = 0 whenever
|z|| = 0, |laz| = |al||z]| and ||z + y|| < [|z|| + ||y|| for all z,y € X and every o € K.
A normed sequence space X is called a Banach sequence space if it is complete with
the topology generated by its norm. Also, as it is the case for arbitrary normed
spaces, if a normed sequence space X contains a sequence ()72, with the property
that for every x € X there exists a unique sequence (ay)3>, of scalars such that
lim, o0 || — (11 + 2bo + - - - + @,by,)|| = 0; then the sequence (by);—, is called a

Schauder basis for X (or simply a basis for X) and the series Y - ayb; which has



the sum x is then called the expansion of x, with respect to the given basis, and we
then say that z has uniquely been represented in the form x = > 77 | axb,. Further, a
normed sequence space X is said to be separable if it contains a countable dense subset,
and it is well-known that every Banach space with Schauder basis must be separable.
Furthermore, if X is a normed sequence space; then for each positive integer k, there
exists a mapping 7y, : X — K defined by x +— 7 (z) = x;, for all x € X, these mappings
mi’s (for all k) are called the coordinate-maps of X or the coordinates of X, where K
is the scalar field of X [§].

A normed sequence space X is called a BK space if it is complete and all its
coordinate-maps are continuous. In other words, by a BK space, we mean a Banach
sequence space with continuous coordinates. It is well-known that the above mentioned
sequence spaces are all BK spaces with their natural norms. More precisely, the spaces
U, c and ¢y are BK spaces with the sup-norm || - || given by ||x]|s = supy |zx|. Also,
for 1 < p < oo, the spaces ¢, are BK spaces with the p-norm || - ||, defined by
|zll, = (ZZil|xk|p)1/p and the spaces bv, are BK spaces with their norm || - {4,
given by |||y, = (D opeqlzre — xk,llp)l/p. Moreover, the spaces bs, cs and csg are
BK spaces with the series-norm || - ||s defined by ||z||s = sup,, | >_,_ =k |- Besides, the
difference spaces o (A), ¢(A) and ¢o(A) are BK spaces with the A-norm || - ||a given
by ||lz|la = supy, [zx — 21| [14].

For any sequence space X, the concept of Kdthe-Toeplitz duality of X, so-called
as the a-, 8- and y-duals of X can simply be given by means of the spaces (a) = /1,
(B) = cs and () = bs. For this, let  be any of the duality symbols «, 3 or 7, that is

0 := «, B or . Then, the §-dual of X is a sequence space denoted by X? which can



be defined as follows:
X={acw: ar € () forallz € X} (0 =a,pB or ), (1.1.2)

where () = {1, (8) = ¢s and () = bs. In other words, the a-, 5- and -duals of X are

respectively denoted by X, X# and X" which are sequence spaces defined as follows:
X = {a = (ag) € w: ax = (agzy) € £y for all = (xy) € X},

XP = {a: (ar) € w: ax = (agzg) € cs for all x = (xy) GX},
X7 = {a: (ag) € w: ax = (agzyg) € bs for all x = (xy) EX}.

Besides, it is well-known that X¢ € X? C X7, the inclusion X C Y implies that
Y? C X% and we have ¢ = ¢’ = (9 = (1, ¢} = (., and ég = {4 for p > 1 with
qg=p/(p—1), where X and Y are sequence spaces. The basic properties of dual spaces
can be found in [8, 21, 33].

Due to the infinite dimensions of sequence spaces in the general case, the notion
of matriz transformations between sequence spaces has been arisen for study the linear
operators between such spaces which can be given by infinite matrices. For an infinite
matrix A with real or complex entries any (n,k > 1), we write A = [a.]55—, or simply
A = [ank), and we will write A, for the n-th row sequence in A, that is A, = (@),
for each n > 1. Also, for any sequence = € w, the A-transform of x, denoted by A(x),

is defined to be the sequence A(z) = (A, (x))22; whose terms given by

An() =t wy (n>1) (1.1.3)
k=1
provided the convergence of series for each n > 1 and we then say that A(z) exists.

Further, for any two sequence spaces X and Y, we say that A acts from X into Y if

A(x) exists and A(x) € Y for every x € X [47]. Furthermore, the matriz class (X,Y)

9



is define to be the collection of all infinite matrices acting from X into Y. In particular,
an infinite matrix A is said to be conservative if A € (¢, c) and a conservative matrix
A is said to be regular if lim,, o, A,(z) = lim, o x, for all z € ¢ [32]. In fact, there
may exists an infinite matrix A such that A ¢ (X,Y’) and so the infinite matrices in
the class (X,Y’) must be characterized from those matrices which are not in (X,Y).
That is, there must exist a list of necessary and sufficient conditions on the entries of a
given infinite matrix A to be in the class (X,Y), where A € (X,Y) if and only if A(x)
exists as well as A(z) € Y for every x € X. In other words, A € (X,Y) if and only
if A, € X? for every n > 1 and A(z) € Y for all # € X, and so the S-duality is an
important tool for characterizing matrix classes [21]. Obviously, if A € (X,Y); then
A defines a linear operator A : X — Y by z — A(x), and we may call it as a matriz
operator (matrix mapping) and the same for every linear operator from X into Y which
can be given by an infinite matrix. That is, a linear operator between sequence spaces
L : X — Y is called a matrix operator if there exists an infinite matrix A € (X,Y) such
that L(z) = A(z) for all x € X and we then say that L is given by an infinite matrix,
viz A. Moreover, it is worth mentioning that the most general forms of linear operators
between sequence spaces can be given by infinite matrices [34]. This fact gives a special
importance for the notion of matrix transformations between sequence spaces, which
has been studied by several authors in many research papers (see [33, 35, 58]) and
has recently been used to introduce new sequence spaces and characterize their matrix
classes by means of the idea of matrix domains (see [27, 34, 43]). For an infinite matrix

A and a sequence space X, the matriz domain of A in X is a sequence space denoted

by X4 and defined as follows:

Xa={recw: Alx) e X}. (1.1.4)

10



The most useful cases of matrix domains are those obtained from special types of

infinite matrices called as triangles, where an infinite matrix 7" = [t,]3%,—, is called a

triangle if t,,, # 0 for every n > 1 and t,,;, = 0 for all k > n (n,k > 1). For example, the

sum-matrix ¢ and the band-matrix A are infinite matrices which are triangles defining

the partial sum and the difference operator, respectively. To see that, the triangles

1
1
1
1

)
— = O O
_ o O O

1 0 0 0

-1 1 0 0

and A=| 0 -1 1 0
0 0 -11

have the transforms o(x) = (0,(z)) and A(x) = (A(x,)) which can be obtained by

using (1.1.3) to get o,(z) = > ,_, 2 and A(z,) = x, — x,—1 for all n > 1 with

A(xy) = z; which is the same result as given in (1.1.1), where x € w. That is,

the sum sequence o(z) and the difference sequence A(z) are respectively the o- and

A-transforms of z. This fact, together with (1.1.4), leads us to obtain the following:

cso = () ={r €w: o(x) € o},

cs=(c)g ={x€cw: o(x) € c},

bs = (lns)o = {r € w: o) € €},

co(A) = (co)a ={zr € w: Ax) € ¢},

c(A)=(c)a={rew: A(zx) € ¢},

loo(A) = (loo)r ={z € w: Ax) € ls},

bu, = (lp)a ={r cw: Ax) € (,} (1<p<o0)

which means that these spaces are the matrix domains of the triangles ¢ and A in the

classical sequence spaces [8].

This idea has been applied by many authors in several

interesting studies as presented in the next section.

11



1.1.3 Previous Studies

The approach constructing a new sequence space by means of the matrix domain
of a particular infinite matrix has been employed by Maddox, Wang, Ng, Lee, Kizmaz,
Rakocevi¢, Malkowsky, Savas, Bagar, Altay, Mursaleen, Noman, Karakaya, Kirici,
Kara, Polat, Aydin, Bektag and many others (e.g., see [4, 5, 6, 10, 11, 16, 18, 20, 22,
23, 24, 25, 26, 27, 36, 47, 53, 55, 63, 64]). More recently, due to the various properties
of the triangles as an important particular case of infinite matrices, (for instance, the
matrix domains of triangles in BK spaces are also BK spaces), the idea of introducing
a new sequence space by means of the matrix domain of a given triangle has largely
been used by several authors in many research studies with different manners. For

instance, we display here the following previous studies:

(1) The Cesaro sequence spaces have been constructed by Ng and Lee in 1978
[46] (see also Sengoniil and Basgar, 2005 [54]) as domains of the Cesaro matrix C! of

arithmetic mean in the spaces ¢, for 1 < p < oo, that is
ey ={rew:C(z) €} (1<p< )
which are BK spaces with ||zl = [|C" ()] ,, where

Cl(z) =+ Z:lek (n>1).

n

(2) The difference sequence spaces have been studied by Kizmaz in 1981 [29, 30]

as domains of the band matrix A of difference in the spaces ¢y, ¢ and /., that is

p(A)={r cw: Ax) € u} (1= cp,cor lo)

which are BK spaces with ||z]|a = ||A(2)||eo, where A(x,) = x, — 2,1 for all n > 1
and A(xq) = x1.

12



(3) The sequence spaces of p-bounded variation have been studied by Basar
and Altay in 2003 [9] as domains of the band matrix A of difference in the spaces
l, for 1 < p < oo, that is bv, = {z € w : A(z) € {,} which are BK spaces with

i, = [ A(@)]], for all & € by, (1 < p < o0).

(4) The Euler sequence spaces have been introduced by Altay and Bagar in 2005
[2] (and together with Mursaleen, 2006 [3, 38]) as domains of the Euler matrix E" in

the spaces ¢y, ¢, lo and £, for 1 < p < oo, that is
eg={rcw:E(v) €c}, e.={xecw:E(z)€c}

ero ={r€ew: E'(z) €l}, e,={vrecw: L (z) €}

Also ep, e and el are BK spaces with |[z][g = ||E"(2)|| and all e} are BK spaces

with ||z[|g; = [[E"(2)]], (1 <p < o0), where 0 <7 <1 and

B =" (3~ 1)(1 SRl (> 1),

(5) The generalized Cesaro sequence spaces have been studied by Malkowsky
and Rakocevi¢ in 2007 [34] as domains of the generalized Cesaro matrix (C, «) of order

« in the spaces p, where 1 = ¢y, ¢, lo or £, (1 < p < 00), that is

p(Ca) ={z cw: (C,a)(z) € u}

which are BK spaces with ||z||.ca) = [[(C, a)(2)||,, where a > 0 and
n—D!'ax=r Na+n—-—k+1)
=~ "/ >1).
(- 0n@) = Tty 2 s CETES I

(6) The sequence spaces of weighted means have been constructed by Malkowsky

and Savag in 2008 [35] as domains of the matrix W! of weighted means in the spaces

13



p, where 1 = ¢g, ¢ or Ly, that is w!(u) = {z € w: W!(z) € p} which are BK spaces

with ||zl = [|[Wi(2)||s0, where s and ¢ are sequences of non-zero scalars and
W)= =5t (n>1)
s/m S, k=1 - '

(7) The sequence spaces of generalized means have been defined by Mursaleen
and Noman in 2011 [43] as domains of the matrix A(r,s,t) of generalized means in
the spaces p, where = co, ¢, lo or £, (1 < p < 00), that is u(r,s,t) = {z € w :
A(r,s,t)(x) € p} which are BK spaces with ||z, = ||A(r, s,t)(2)]|,, where 7 and
t are sequences of non-zero scalars, s is a sequence with first term s; # 0 and

1 n
A(ry s, t)p(x) = — ZkZISn_kJ,_Itk T (n>1).

/rn
(8) The A-sequence spaces have been introduced by Mursaleen and Noman in 2010
- 2011 [39, 41, 42] as domains of the Ad-matrix A in the spaces ¢y, ¢, {« and ¢, for

1 < p < oo, that is
g={rcw:\Nx)ccq}, ={rcw:Ax)cc}

O, ={rew:Az)ely}, O={zcw:Ax)el}.

Also ¢j, ¢* and €, are BK spaces with [lz][s = ||A(2)]« and all £ are BK spaces
with ||z|la, = [|[A(z)], (1 < p < 00), where A = (A) is a strictly increasing sequence
of positive reals and

1

An(z) = )\_HZZI()% — M)z (n>1).

It is worth mentioning that the notions of A-matrix and A\-sequence spaces have been
taken away by researchers and authors upto so far limits. For instance, they have
introduced the concept of almost convergence of double sequences by using the -

matrix and A-sequence spaces (e.g., by Ahmad and Ganie in 2013 [1] and by Raj with
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others in 2015 [52]) and they have studied the general difference forms of the A-matrix
and A-sequence spaces (e.g., by Sénmez and others in 2012 [56] and by Biggin with
others in 2014 [11]). Further, we will display the following studies depending on the

A-matrix and A-sequence spaces:

(9) The Ax-sequence spaces have been constructed by Braha and Bagar in 2013

[14] as domains of the matrix A, in the spaces ¢y, ¢ and £, that is

A\(p) ={zxew: A\(z) € pu} (= cop,cor ly)

which are BK spaces with ||z]|a, = [|Ax(2)|lco, Wwhere A, is the same matrix A with

the sequence A()) instead of A provided that A(\) is increasing, that is

(Ay)a(z) = ﬁ

(10) The A)-sequence spaces have been studied by Ganie and Sheikh in 2013 [19]

S AN AN T (0= 1),

as domains of the matrix A in the spaces ¢y, ¢ and £, that is
p(AY) ={z cw: A)(z) € u} (1= co,cor ly)

which are BK spaces with [[z[|ax = [|A}(2)]|e, Where u = (uz) is a real or complex

sequence of non-zero terms and

1

(ADn(e) = 5-37, o = Ne) (e = ) (02 1),

(11) The A)-sequence spaces have been introduced by Ercan and Bektas in 2014

[17] as domains of the matrix A in the spaces cg, ¢ and {4, that is
pMA) = {r € w: A)(z) € u} (= co,cor ly)

which are BK spaces with ||z||ay = [[A}(2)ec, where v = (v}) is a real or complex

sequence of non-zero terms and

1

(A))n(x) = )\—nzzl()\k = M) (UpTR — vpaTp—1) (2> 1).
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(12) The U*-sequence spaces have been constructed by Zeren and Bektas in 2014
[67] as domains of the matrix U in the spaces ¢y, ¢ and £, that is

pru) ={x € w: UNz) € p} (= cp,cor ly)

which are BK spaces with ||z]|p» = ||U*(%)||e, Where u = (u;,) is a real or complex

sequence of non-zero terms and

Unp

UMz) = Anzzzluk “ N ae (n>1).

(13) The binomial sequence spaces have been studied by Biggin in 2016 [12] as

domains of the binomial matrix B™® in the spaces ¢, for 1 < p < oo, that is
by ={r €ew: B"(x) € {,} (1 <p<o0)

which are BK spaces with |[z[|grs = [|B™*(2)[[, (1 < p < 00), where r and s are

non-zero reals such that r + s # 0 and

r,s _ 1 n n—1 n—k k—1
Bn (.ﬁﬂ) = mzkzl(k‘—1>s r T (nz 1)

(14) The Taylor sequence spaces have been introduced by Talebi in 2017 [59] as

domains of the Taylor matrix 7 in the spaces ¢, for 1 < p < oo, that is
tg:{wa:Te(x)Eﬁp} (1 <p<o0)
which are BK spaces with [|z|[zs = 1T%(z)|l, (1 <p<oo), where 0 < < 1 and

T4 (z) = Z;(’“) (1= 0" F e (n>1).

n

(15) The Pascal sequence spaces have been constructed by Aydin and Polat in

2018 [7] as domains of the Pascal matrix P in the spaces ¢y, ¢ and (., that is

Ph={rzecw:Plx)ec}, P.={vcw:Plx)ec}, Po={rvcw:Plx)ely}
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which are BK spaces with ||z]|p = || P(2)]|c, Where

P,(z) = Z::1 (Z : llf) zr,  (n>1).

(16) The Pascal difference spaces have been studied by Aydin and Polat in 2019
[50] as domains of the generalized band matrix A(™) of order m in the Pascal sequence

spaces Py, P. and P, that is
n(A™) = {z e w: A (z) € n} (n = Py, P. or Py)

which are BK spaces with [|z]|pam) = [[P(A™ (2))||c, where P is Pascal matrix and

Agm) (ZL’) - Z::max{l,n—m}<_1)n_k (nrf k‘) Tk (n < 1)

(17) The tribonacci sequence spaces have been introduced by Yaying and Kara

in 2021 [65] as domains of the tribonacci matrix 7 in the spaces ¢y and ¢, that is
co(T)={rxcw:T(x) €cy} and ¢(T)={z€w:T(x)€c}

which are BK spaces with ||z||r = ||T(x))||oc, where

L) = ———3" ha (=)

b + by — 1

and t = () is the sequence of tribonacci numbers [65].

Furthermore, we refer the reader to [4, 5, 6, 10, 11, 16, 18, 20, 22, 23, 24, 25, 26, 27,
36, 47, 53, 55, 63, 64] for additional similar studies constructing new sequence spaces

by means of the concept of matrix domains.

1.2 Research Methodology

In this section, we display the research methodology used in our investigation.
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1.2.1 Research Problem

By going on through the previous studies in the last section, it maybe noted that
there is a gap in the knowledge which was left by researchers in the literature of the
modern theory of sequence spaces. More precisely, many new sequence spaces of the
A-type have been introduced and studied, but the A-sequence spaces defined by series
have not. Thus, we are going to fill up that gap in the literature by introducing and

study the A-sequence spaces of bounded, convergent and null series.

1.2.2 Research Objectives

In this study, our aim is to add the following contributions:

e Introducing some new A-sequence spaces of bounded, convergent and null series.
e Study some algebraic and topological properties of our new A-sequence spaces.
e Constructing the Schauder bases for our new \-sequence spaces.

e Deducing some new inclusion relations between these new spaces.

e Concluding the Kothe-Toeplitz duals of our new A-sequence spaces.

e Characterizing some new classes of matrix operators between our spaces.

1.2.3 Research Tools

In the present thesis, our study and investigation will be based on the usual math-
ematical tools as the proof and conclusion, and the usual mathematical methodology
as the mathematical induction and investigation. Also, many mathematical concepts
will be used as main tools in our thesis, and the most important tools among them are

sequence, series, matrix and space.
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1.3 Preliminaries

In this section, we give a list of the preliminary results which will be used in
proving the main results in this thesis. These preliminaries are already known in the

literature of the theory of sequence spaces and matrix transformations.
Lemma 1.3.1 (Boos [13]) If p < p' (1 < p < o0); then the inclusions ¢, C {y and
bu, C bvy are strictly satisfied. Further, we have the following strict inclusions:

o CcCly, U, Ccy, L, Cbu, Cco(A), ¢soCesCbs,

co(A) C c(A) Clo(A), bs Clo Cl(A), bvy CcCco(A), € CesCp.

Lemma 1.3.2 (Maddox [32]) We have the following facts:

(1) The spaces L, ¢ and ¢y are BK spaces with the sup-norm || - || given by
1% ]loc = supy, [l

(2) The spaces bs, cs and csy are BK spaces with the series-norm || - ||s defined by
[2]ls = sup, | > Zf_1zk |-
Lemma 1.3.3 (Malkowsky and others [34]) We have the following facts:

(1) The sequence (e, eq,€3,-++) is a Schauder basis for the space cy and every

x € ¢ has the unique representation x = - | Ty €.

(2) The sequence (e, ey, eq,---) is a Schauder basis for the space ¢ and every x € ¢

has the unique representation x = Le + > ;- (x, — L) eg, where L = limy_, o x,.

(3) The spaces ¢y and ¢ are separable while the space ly, is not separable and has
no Schauder basis (in general, if X is a Banach sequence space with Schauder basis;

then it must be separable).
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Lemma 1.3.4 (Wilansky [61]) Let X and Y be sequence spaces. Then, we have the

following:
(1) X*c XP c X7,
(2) If X CY; then Y’ C X9, where 0 =, 3 or .

B)cf=cl =00 =1, 00 =1, andfgzﬂqforp>1 with g =p/(p —1).

Lemma 1.3.5 (Darling [21]) We have the following:

(1) csp® =41, cs® =l and bs® = {;.

(2) cs0® = bvy, cs® = bvy and bs” = bu,.

(3) ¢s¢7 = buy, ¢s” =bvy and bs” = buy.
Lemma 1.3.6 (Bana$ and others [8]) Let X, Y and Z be sequence spaces, and A an
infinite matriz. Then:

(1) Ae (X,Y) <= A, € X for everyn >1 and A(x) €Y forallz € X.

2) IF X C Y then (Y, Z) C (X, Z).

3) IfY C Z; then (X, Z) C (X,Y).
Lemma 1.3.7 (Malkowsky [33], Wilansky [61]) Let X and Y be sequence spaces, A
an infinite matriz and T a triangle. Then, we have the following facts:

(1) T e (X,)Y) <= T(z) €Y forallz € X (note that: T(x) exists for all v € w).

(2) If X is a BK space with a norm || - ||; then Xt ia a BK space with the norm

I |z defined by |[z|lz = | T(2)|| for all x € Xr.

(3) Ae (X,Yr) <= TAe€ (X,)Y).
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Further, it seems to be quite natural, in view of the fact that matrix operators
between BK spaces are continuous, to find necessary and sufficient conditions for
the entries of an infinite matrix to define a linear operator between BK spaces which
means the characterization of matrix classes concerning sequence spaces. The following
familiar results can be found in the paper of Stieglitz and Tietz [58, pp. 2-9] and will
be needed to prove our main results in the next chapters. In the following results, we
will use the symbol u to be any one of the spaces ¢y, ¢ or {4, and K stands for the

collection of all non-empty finite subsets of positive integers.

Lemma 1.3.8 Let 1 < p < oo. Then, we have (co,¥p) = (¢,l,) = (l,lp), and

A € (. 0,) if and only if the following condition holds:

()
sup Z Z Ank

Kek 20 |kek

p

< o0,

where KC stands for the collection of all non-empty finite subsets of positive integers.

Lemma 1.3.9 We have (¢, lo) = (¢, lo0) = (loo, o), and A € (u,ls) if and only if
the following condition holds:
sup Z |ank| < 0o (1.3.1)
k=1
Lemma 1.3.10 We have the following:

(1) A€ (lo,c) if and only if (1.3.1) and the following conditions hold:

lim a,, = ay exists for every k> 1, (1.3.2)
n—0o0

oo
lim Z |ape —ar| =0.
n—oo

k=1

(2) A€ (¢,c) if and only if (1.3.1), (1.3.2) and the following condition hold:

(o]
lim E Apr = Q exists.

(3) A€ (co,c) if and only if (1.3.1) and (1.3.2) hold.
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Lemma 1.3.11 We have the following:

(1) A€ (L, co) if and only if the following condition holds:
lim Z |an| = 0.
n—00 P
(2) A€ (¢, ) if and only if (1.3.1) and the following conditions hold:
lim a,, =0 for every k> 1, (1.3.3)
n—oo

o0
lim g ank = 0.
n—oo

k=1

(3) A€ (co, ) if and only if (1.3.1) and (1.3.3) hold.

Lemma 1.3.12 We have the following:

(1) A€ (l1,0y) if and only if the following condition holds:

sup |ang| < oo. (1.3.4)
n, k

(2) A€ (01, c) if and only if (1.3.2) and (1.3.4) hold.

(3) A€ (l1,¢o) if and only if (1.3.3) and (1.3.4) hold.

Lemma 1.3.13 Let 1 <p < oo and g =p/(p—1). Then, we have the following:

(1) A€ (by,lx) if and only if the following condition holds:

n

sup Y Jank|* < oc. (1.3.5)
k=1

(2) A€ (b, c) if and only if (1.3.2) and (1.3.5) hold.

(3) A€ (b,,co) if and only if (1.3.3) and (1.3.5) hold.
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Lemma 1.3.14 We have the following:

(1) A€ (cs,c) if and only if (1.3.2) and the following condition hold:

supz |k — A, 41| < 00. (1.3.6)
"ok=1

(2) A€ (bs,l) if and only if both (1.3.6) and the following condition hold:

lim a,, =0 for every n > 1. (1.3.7)
k—o0
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Chapter 2
NEW A-SEQUENCE SPACES




2 NEW A-SEQUENCE SPACES

The approach constructing a new sequence space by means of the matrix domain of
a particular triangle has recently been employed by several authors in many research
papers (see for example [19, 28, 33, 40, 42, 50, 60, 66]). In the present chapter, we
study some additional properties of the well-known spaces bs, ¢s and csy of bounded,
convergent and null series, respectively. After that, we introduce the new A-sequence
spaces bs*, cs* and cs) of bounded, convergent and null series, respectively. Further,
we study some algebraic and topological properties of our new spaces. Finally, we
construct the Schauder basis for the spaces cs* and cs) with concluding their sepa-
rability. This chapter is divided into three sections, the first is devoted to study the
sequence spaces defined by series, the second is for introducing our new spaces with
study their properties and the last is to construct their Schauder bases. The materi-
als of this chapter are part of our research paper [48] which has been published in the

Albaydha Univ. J., and presented in the 2" conference of Albaydha University on 2021.

2.1 Sequence Spaces Via Series

In this section, we study some additional properties of the famous spaces bs, cs
and csg of bounded, convergent and null series, respectively. These spaces have been
defined as the domains of the triangle o, so-called the sum-matrix, in the spaces (., ¢
and co, respectively. That is bs = ({x)s, ¢s = (¢), and ¢sg = (¢p), which can be written
asbs={r cw: o(x) €l}t,cs={rcw: o(x)€c}and csy={r €cw: o(x) € ¢},

where o(z) = (0,()) with 0,(z) = Y,_, x;, for all n > 1. Further, since £, ¢ and ¢
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are BK spaces with || - || and o is a triangle; it follows that bs, ¢s and c¢sg are BK
spaces with the norm || - || given by ||z||s = sup, | > r_; x| (see (2) of Lemma 1.3.2).

Also, we may begin with proving the following results:

Lemma 2.1.1 The spaces bs, cs and csqg are isometrically linear-isomorphic to the

spaces Ly, ¢ and cq, respectively. That is bs = l,, ¢s = ¢ and csy = ¢y.

Proof. Let i be standing for any one of the spaces /., ¢ and ¢y, and let i be the
respective one of the spaces bs, c¢s and csg. Then, it follows by definition that the
spaces ji are the domains of the sum-matrix ¢ in the spaces p, that is g = u, and so
we have the linear operator o : i — p. Also, since o is a triangle and so invertible
with o1 = A [34]; we deduce that o is a linear bijection preserving the norm, where
lo(x)]|o = ||z||s for all x € . Hence, the spaces i are isometrically linear-isomorphic

to the spaces u, that is g =2 4 and this completes the proof. O

Lemma 2.1.2 Suppose that ¢, = (1,—1,0,0,---), é2 = (0,1,—-1,0,0,---), --- etc.
Then, the sequence (éy,és,€é3---) is a Schauder basis for the space csy and every x € ¢S
has the unique representation © =Y ;- ox(x) éy. Also, the sequence (é,é1,éq,¢é5--+)
is a Schauder basis for the space cs and every x € cs has the unique representation

x=Lé+> 7 (ok(x) — L) é, where é = e; and L = lim,,_, 0,,(z).

Proof. This result is immediate by Lemma 1.3.3, since the spaces i are isometrically

linear-isomorphic to the spaces p (Lemma 2.1.1). O

Lemma 2.1.3 The spaces csq and cs are separable while the space bs is not separable

and has no Schauder basis.

Proof. Since csy and cs are BK spaces and so Banach spaces having Schauder bases

(by Lemma 2.1.2); this result follows from (3) of Lemma 1.3.3. O
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Moreover, the a-, §- and «y-duals of the spaces bs, cs and csy are given in Lemma
1.3.5 and some inclusion relations concerning these spaces can be found in Lemma
1.3.1. For example, we have the strict inclusions csy C c¢s C bs, {1 C ¢s C ¢y and

bs C l. Furthermore, we prove the following result:

Lemma 2.1.4 We have the following:

(1) The inclusion ¢ Nbs C ¢y holds.
(2) The equality ¢ N bs = ¢y N bs holds.

(3) The inclusion cs C co N bs strictly holds.

Proof. For (1), take any € cNbs. Then = € ¢ as well as x € bs and so o(x) € (.
Also, since = € c¢; the limit limy_, 7). exists and we must have limy_,o, ox(z)/k =
limg o 73 by the regularity of the Cesaro matrix C! of arithmetic mean [46, 54],
where C1(z) = (op(x)/k) (see the 1% study in section 1.1.3, p.12). But o(z) € ls
(by assumption) and so limy o ox(x)/k = 0 which implies that limy ,o 2 = 0 (as
limy o0 g = limg oo 0% (x)/k). Thus z € ¢q and it follows that the inclusion ¢cNbs C ¢
holds. To prove (2), we have ¢y C ¢ and so ¢ Nbs C ¢Nbs. Also, for the converse
inclusion, it is clear that ¢ N bs C bs and we have ¢ N bs C ¢y by part (1) which
together imply that cMNbs C ¢oNbs. Therefore, we deduce the equality cNbs = ¢y N bs.
For the final part (3), it is obvious that the inclusion ¢s C ¢y N bs holds by Lemma
1.3.1. To show that this inclusion is strict, consider the sequence x = (x) defined by

rp = (—1)""1/n for (n? —n)/2 <k < (n®+n)/2, where n is any positive integer, i.e.

B (1 11111 1 1 1 1 >
T = Y 2 I 2 9 3 ) 3 9 3 ) 4 ) 4 ) 4 ) 4 I .
Then, obviously x € ¢y and we obtain that

1 1 2 3 2 1
= (1. = - 212 2 Z >
U(x) ( ) 27 07 37 37 Y 47 47 47 07



which can be written as follows

1 (—1)" (M) for n(n +1) <k< (n+1)(n+2) (n > 1).

onl@) =5+ 2(n + 1) 2 2
Thus, we deduce that —1/2 < [2k — (n+ 1)%]/[2(n + 1)] < 1/2 whenever n(n +1)/2 <
E<(n+1)(n+2)/2and so 0 < o(z) <1 for all £ > 1 which means that o(x) € {
and hence = € cyNbs. But, it is obvious that o(x) € ¢ (as opmi1)/2(x) = (1—(-1)")/2
for all n) and so = ¢ cs. That is, there exists a null sequence whose a bounded sum

but not convergent. Therefore, the inclusion cs C ¢g N bs is strict. O

Finally, we end this section with the following basic example:

Example 2.1.5 Consider the sequences z,y and z given by zp = A(k/(k + 1)),
yr = k/(k+ 1) and 2; = (—1)*! for all £ > 1. Then, it can easily be seen that
o(x)=(n/(n+1)?) €cy,o(y)=(1-1/(n+1)) €cand o(z) = ((1—(=1)")/2) € L.

Thus, we find that x € ¢sg, y € ¢s and 2z € bs.

2.2 A-Sequence Spaces

In this section, we present the idea of A-sequence spaces and introduce the new
A-sequence spaces bs*, cs* and csy of bounded, convergent and null series, respectively.
Also, we show that our new spaces are BK spaces and conclude their isomorphic
relations with the spaces /., ¢ and ¢y, and with the spaces bs, ¢s and cs.

Throughout this study, we assume that A = (/\j);il is a strictly increasing sequence
of positive reals tending to co. That is 0 < A\; < Ay < --- and \; = 0o as j — oo.
Also, we define the A-triangle A = [\4]75,_; for every n,k > 1 by

Ao = At

>\nk: )\n ’
0; (k>n>1),

(I=k=n), (2.2.1)
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where Ao = 0. Then, for every x € w, the A-transform of z is the sequence A(z) =
(An(x)),Z, given by

M@p:%}]M—Ajg% (k> 1). (2.2.2)

k =1

The A-sequence spaces ¢, ¢*, (A and 6;)‘ (1 < p < o0) have been introduced by

Mursaleen and Noman [39, 41] as the matrix domains of A in the spaces ¢y, ¢, {o and

¢,, respectively. That is
¢ =(co)r ={r€w: Az) € co},
A=(c)r={rew: A=) €},
0 = lo)r ={r€ew: A1) € ly},

b=Upr={recw: AMz)el,} (1<p<oo).

Also, it has been shown that the spaces ¢, ¢* and ¢2 are BK spaces with the

norm ||z][a., = supy, |Ax(2)| and the spaces £ (1 < p < co) are BK spaces with the
norm ||zl|a, = (D pey [Ax(2)|P)/P. Further, the following important results will be

used in the sequel which can be found in [39] and [41].

Lemma 2.2.1 We have the following:

(1) The matriz A is regular, that is limy_,o A (x) = limg_,o0 . for every x € c.
(2) The following equality satisfies for every x € w:

Ak

A T v

Au(z) — Apor(2)] (k> 1). (2.2.3)

Lemma 2.2.2 Let 1 < p < oo. Then, we have the following:

(1) The inclusions €y C ¢§ C ¢* C €3, strictly hold.

(2) The inclusions cy C ¢}, ¢ C ¢ and Ly C €2, hold.
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(3) The inclusion £, C £} holds if and only if 1/X € £,, where 1/X = (1/X;)32,
(4) The equalities () = Ly, ¢ = co, & = ¢ and £y, = U hold if and only if A/ A(N) € Lo,

where A/AQ) = (A/AM) ),

We refer the reader to [39] and [41] for additional knowledge concerning the A-
sequence spaces. Now, as a natural continuation of above work, we introduce, in the

next definition, the new A-sequence spaces of bounded, convergent and null series.

Definition 2.2.3 The \-sequence spaces bs*, cs* and csy are defined as the matriz

domains of the triangle A in the spaces bs, cs and csg, respectively. That is
bs* = (bs)y = {z € w: A(z) € bs},
cs* = (cs)a = {r € w: A(z) € cs},
csy = (eso)p = {x € w: A(r) € csp}.

So that, our contribution is the following new spaces:

{ : sup ZAk(as) <oo},
k=1

{ w :  lim ZAk(x) exists}7
k=1

—{ €w : lim g Ak(x)—O}.
n—oo
k=1

Besides, we define the triangle A = nk]z‘fn:l for every n,k > 1 by
) (Ak—Akl)ii; (1<k<n),

Ank = panitlY (2.2.4)
0; (k>n>1).

Then, for every sequence x € w, we have

An(z) = i i i (Ak — Aot (n>1). (2.2.5)
A

k=1 j=k Y
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Thus, it can easily be seen that A(z) = o( A(x)) for all € w which can be written as

An(z) = 0(A(2) = Y Ay(2) (n>1). (2.2.6)
k=1

This means that A = oA and it follows that bs*, es* and cs)) are sequence spaces which

can be redefined as follows:

Definition 2.2.4 The \-sequence spaces bs*, cs* and csy are defined as the matriz

domains of the triangle A in the spaces Uy, ¢ and ¢y, respectively. That is
bs* = (loo)i, cs"=(c); and csy = (co)i- (2.2.7)
Thus, from the definition, it follows that
bs* = {z e w: A(z) € o},
es* = {zew: Ax) €,
esh) = {z e w: A(x) € ).
Now, we may begin with the following results which are essential for our study.

Theorem 2.2.5 The \-sequence spaces bs*, cs* and cs)y are BK spaces with the norm

| - [|s» defined, for every sequence x in these spaces, by

lz]lr = 1A (@) ]| = sup An(x)’ =sup |y Au(z)|-
Proof. Since /., ¢ and ¢y are BK spaces with their natural norm || - ||« by (1) of

Lemma 1.3.2 and A is a triangle; this result is immediate by (2.2.7) with help (2) of
Lemma 1.3.7 (this result can also be proved by using (2) of Lemma 1.3.2 and (2) of

Lemma 1.3.7 with help of Definition 2.2.3). O

A

Theorem 2.2.6 The \-sequence spaces bs*, cs* and cs) are isometrically linear-

A

12

isomorphic to the spaces ls, ¢ and cy, respectively. That is bs* = (o, cs c,
and cs) = cp.
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Proof. To prove this result, we will show that there exists a linear bijection between
the spaces bs* and (., which preserves the norm. For this, we can use (2.2.7) from
Definition 2.2.4 of the space bs* to define the matrix operator A:obsr = Oy by
z — A(z) for all 2 € bs*, which is a linear operator. Then, it is obvious that A(z) = 0
implies x = 0, and so A is injective. Also, let y € o, be given and define a sequence

x = (x;) in terms of the sequence y by

AN A(Y;)) N AY) — Aj-1 Aly;-1)

o _ > 1), 2.2.8
J A()\]) /\j _ >\j—1 (] = ) ( )
where yg = A9 = 0. Then, it follows by (2.2.2) that
L&
=% > A 1Ay = Alye) (B =1).

j=1
Thus, by using (2.2.6), we find that A, (z) = S27_, A(yx) = yn for all n, which means
that A(z) = y, but y € lo and so A(z) € ly. Thus z € bs* and this means the
existence of x € bs* such that A(x) — y and hence A is surjective. Further, it is clear
by Theorem 2.2.5 that A is norm preserving, since ||A(z)|lo = |25 for every z € bs*.
Therefore, the operator A : bs* — (. is a linear bijection preserving the norm. That
N g

is, our A is an isometry isomorphism between bs* and /., which means that bs

Similarly, it can be shown that c¢s* 2 ¢ and cs) & c. O

Corollary 2.2.7 The A-sequence spaces bs*, cs* and cs) are isometrically linear-

isomorphic to the spaces bs, cs and csg, respectively. That is bs* = bs, cs* = cs, and
csy = csg.
Proof. It is immediate by combining Lemma 2.1.1 with Theorem 2.2.6. O

Remark 2.2.8 We have already shown in the proof of Theorem 2.2.6 that the matrix

A

A defines a linear operator from any of the spaces bs*, cs* or cs) into the respective
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one of the spaces (., ¢ or ¢y, which is an isometry isomorphism, and this implies the

continuity of the matrix operator A which will be used in the sequel.

At the end of this section, we give an example to show that our new spaces bs?,
cs® and cs) are totally different from the spaces (o, ¢, cg, bs, cs and csg. But before
that, and for simplicity in notations, we will use our terminologies as in the proof of
Lemma 2.1.1. That is, we will use the symbol u to denote any of the spaces ¢, ¢ or
co and so [i stands for the respective one of the spaces bs, cs or csy while i* is the

corresponding one of the spaces bs*, c¢s* or csy), respectively.

Example 2.2.9 In this example, our aim is to show that our spaces ji* are different
from all the sequence spaces p and fi. For this, consider the sequence A = (\;) defined
by A = k and so A()\;) = 1 for all & > 1. Then, for any x € w, we have Ay(x) =
(1/k) Zle z; = on(x)/k and A, (x) = Sr_, Ag(x) for all k,n > 1. Thus, our spaces
(ou(@)/k) € i} = {z € w: (X, oula)/k) € ).
Also, define the unbounded sequence z = (z;) by z; = 1 and for k > 1 by

2/(k—1);

can be defined as p* = {z € w :

k/2/(k+ 1) + (k—1)
—(2k — 1)\/2/k;

(k is odd),

2k =

(k is even).

Then, we have z ¢ (., and so z ¢ p which also implies that z ¢ bs and hence z ¢ [

which can independently be obtained from its sum sequence o(z), where

B ky/2/(k+1); (k is odd),
74z) = —k~/2/k; (k is even).

Further, by using (2.2.2) and (2.2.6) we respectively obtain that

Au(z) = 2/(k+1); (k is odd),
—\/2/k; (k is even),

. 2/(n+1); n is odd),

iy - [T (isodd
0; (n is even).
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This implies that A(z) € ¢y and so z € cs) which leads us to z € i*. Hence, we
have shown that z € ji* while 2 ¢ p as well as z ¢ fi. Therefore, we deduce that
pr ¢ pand p* ¢ ji. On other side, consider the sequence 2’ = (z}) defined by
2z, = A(1/log(l+k)) for all £ > 1 with noting that 27 = 1/log2. Then, we get
o(z") = (1/log(1+ k)) € ¢o and so 2’ € csp which implies both 2/ € p and 2’ € fi.
Besides, we find that A(z') = (1/(klog(1 + k))) and so A, (2') = S¢_, 1/(klog(1+k))
which diverges to oo as n — oo and this means that 2’ ¢ bs* and so 2’ ¢ i*. Hence, we
have shown that 2’ ¢ p* while 2/ € p and 2’ € ji. Therefore, we deduce that pu ¢ i* as
well as i ¢ ji*. Consequently, we conclude that all the spaces ji* are totally different

from any of the spaces p and any of the spaces [i, that is i* # (., ¢, ¢, bs, cs or csg.

2.3 Schauder Basis

In the last section, we construct two sequences which form the Schauder bases for
the A-sequence spaces csy and cs*, and we conclude their separability while the space
bs* is not separable and has no Schauder basis.

At the beginning, the Schauder bases for the spaces ¢y and ¢ can be found in
Lemma 1.3.3 and for the spaces csy and cs are given in Lemma 2.1.2. Thus, these
spaces are separable while the spaces ¢, and bs are not separable and so they have no
Schauder bases.

Now, we may begin this section with constructing the Schauder basis for the
sequence space cs)y of A-null series and we will deduce the unique representation of

every x € csf)‘.
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Theorem 2.3.1 For each k > 1, define the sequence ey = (e),)5%, for everyn > 1 by

r A
NV n=k),
Ae — Ag—1 ( )
)\k+1+)\k>
(I =k 1),
o = (Akﬂ ) )
Akl
AL 2 n=k+2),
Abt2 = Apy1 ( )
L 0; (otherwise).

Then, the sequence (e}).- . is a Schauder basis for the space cs) and every x € c¢s) has
7 q k) k=1 14 0 ) 0

a unique representation of the form

=Y Ayx)ep. (2.3.1)

k=1

Proof. For each k > 1, it can easily be seen that

BN = e Nt =M/ T N — A

Thus, by using (2.2.2), we find that A(e}) = e, — ex41 and so A(e}) = ej. This implies
that A(e}) € ¢ and hence e} € ¢s)) for all k > 1 which means that (62):;1 is a sequence

in cs). Further, let = € csy be given and for every positive integer m, we put

2™ = Z Ay(x)ep .
k=1
Then, by operating A on both sides, we find that
AE™) =3 " Aw(@) Aep) = D Aw(x) e
k=1 k=1
and hence

An(2); (n>m).
Now, since A(az) € c¢p; for any positive real € > 0, there is a positive integer mg such

that [A,,(x)| < € for every m > mg. Thus, for any m > mg, we have

lz =2 = sup
n>m

Aaa)| < sup

n>mo

An(a:)‘ <e.
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We therefore deduce that lim,, o [|[2 — 2™ | ,» = 0 which means that 2 is represented
as in (2.3.1). Thus, it is remaining to show the uniqueness of the representation (2.3.1)
of . For this, suppose that 2 = Y7 | ay €. Then, we have to show that a,, = An(x)
for all n, which is immediate by operating A,, on both sides of (2.3.1) for each n > 1,

where the continuity of A (as we have seen in Remark 2.2.8) allows us to obtain that
Ap(z) = Zak An(e}) = Zak Ok = Qi
k=1 k=1
for all n > 1 and hence the representation (2.3.1) of x is unique. a

Further, we have the following result constructing Schauder basis for the sequence

space cs® of \-convergent series.

Theorem 2.3.2 The sequence (e’\,ef,eé, x ) is a Schauder basis for the space cs*
and every x € cs™ has a unique representation of the form
=Lty ([\k(x) - L) &), (2.3.2)
k=1

where L = lim,,_, An(x), the sequence (eg);il is as in Theorem 2.3.1 and e* is the

following sequence:

A A

A 1 1

— - — 1 - O 00 AR .
¢ “ ()\2—)\1)62 ( ’ )\2 —>\17 T )

Proof. It can easily be shown that A(e}) = e; and so A(e*) = e € ¢ which means that

e* € es*. This together with e} € cs) C cs* imply that (e’\, e, ey, ) is a sequence

in ¢s*. Also, let z € ¢s* be given. Then A(z) € ¢ which yields the convergence of the
sequence A(x) to a unique limit, say L = lim,,_, An(x) Thus, by taking y = v — L e,
we get A(y) = A(a:) —Le € ¢y and so y € cs). Hence, it follows by Theorem 2.3.1 that
y can uniquely be represented in the following form:

y=> M(y)er =) (Ak(x) - L[\k(GA)) e
k=1

k=1 k=1

>
I
~—
=
=
—~
8
N~—
|
b~
~—
Q
E
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Consequently, our z can also be uniquely written as

r=Let +y= Le’\+Z<JA\k(:E)—L) ep
k=1

which proves the unique representation (2.3.2) of z and this step ends the proof. O

Moreover, the following result concerning the topological property of separability.
Corollary 2.3.3 We have the following facts:
(1) The spaces cs) and cs* are separable BK spaces.
(2) The space bs* is a non-separable BK space and has no a Schauder basis.

Proof. Since csy and ¢s are BK spaces and so Banach spaces having Schauder bases;

this result is immediate by (3) of Lemma 1.3.3. O

Finally, we conclude this chapter with the following example on the Schauder basis

for the space cs).

Example 2.3.4 By returning back to Example 2.2.9, we have studied the particular

case of the sequence A = (\;) given by \; = k for all k£ and obtained that

csp = {wa: (%Jk(x)) Gcso} - {xew: (Z:lak;ix)) Gco}.

Also, we have shown that z € csy, where z = (2;,) is the sequence given by 2; = 1 and

k/2/(k+1)+ (k—1)y/2/(k—1);  (kis odd),
—(2k — 1)y/2/k; (k is even)

2 =

for k > 1, where A(z) € ¢ is given by

. 2/(n+1); (nisodd),

0; (n is even).
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On other hand, it follows by Theorem 2.3.1 that the sequence (e{‘, ey, €3, ) is the

Schauder basis for the space csy, where
) = (1,-3,2,0,0,0,--), e =(0,2,-5,3,0,0,---), e5 =(0,0,3,=7,4,0,---),

Thus, by applying Theorem 2.3.1 to z, the sequence z has the unique representation

oo
§Ak1 €2k1 E \/—€2k1
k=1

37



Chapter 3
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3 INCLUSION RELATIONS

In the present chapter, we establish some interesting inclusion relations between our
new A-sequence spaces and derive other inclusion relations between our spaces and the
classical sequence spaces. This chapter is divided into three sections, the first is devoted
to derive some basic inclusion relation, the second is for proving some preliminary
results to be used in deducing the main results in the last section. The materials
of this chapter are part of our research paper [48] which has been published in the
Albaydha Univ. J., and presented in the 2" conference of Albaydha University on

2021.

3.1 Basic Results

In this section, we establish some basic inclusion relations concerning with the new

A-sequence spaces bs*, cs* and cs)).
Lemma 3.1.1 We have the following facts:
(1) The inclusions csy C cs* C bs* strictly hold.
(2) The inclusions {; C cs* C ¢y and (7 C bs* C 02, strictly hold.

(3) The inclusion csy C ¢y strictly holds.

Proof. For (1), the inclusions csy C cs* C bs* are obviously satisfied (by the well-
known inclusions c¢sy C ¢s C bs, see Lemma 1.3.1). To show that these inclusions are

strict, define a sequence = = (z;) by

27N =270 N
)‘j - >\j—1
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Then, by using (2.2.2), we find that Ay(z) = 2% for every k > 1 and so A(z) =
(1—27") € ¢\ ¢o. This means that = € cs* \ ¢s) and so the inclusion csy C cs? is

strict. Also, define the sequence y = (y;) by

w0 (3R

Then, for every £ > 1, we find that

(J=1).

%Z: I+ A) = (D (k21

and hence A,(y) = —1 when n is odd or A,(y) = 0 when n is even. Thus, we deduce
that A(y) € I \ ¢ which means that y € bs* \ ¢s* and hence the inclusion c¢s* C bs
is also strict, and part (1) has been proved. To prove part (2), let € ¢;. Then,
the series Y ;- Ag(x) is absolutely convergent and so it converges which means that
z € cs* and hence the inclusion ¢} C e¢s* holds which implies the inclusion ¢} C bs*.
Also, if € cs*; then it follows, from the convergence of the series Y .~ Ax(z), that
A(z) € ¢y and hence = € ¢ which means that the inclusion cs* C ¢} holds. Similarly,
we can show that bs* C ¢ holds. To show that these inclusions are strict, define the

sequence x = (z;) by

%:QJyOMUL?L%Hﬁ» G>1)

Then, it can easily be seen that A(z) = ((=1)*/(k+ 1)) € e¢s\ ¢; and so x € cs* \ £}
which means that the inclusion /7 C cs* is strict, and so is the inclusion £} C bs’.

Further, define the sequence y = (y;) by

Y = A(;j/_(‘i:ll)) (j=1).

Then, it is easy to show that A(y) = (1/(k+1)) € ¢o\ cs which means that y € ¢} \ cs*

and so the inclusion cs* C ¢} is strict. Also, it is clear that A(e) = e € s \ bs which
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implies that e € 2\ bs* and hence the inclusion bs* C £ is also strict which ends the

proof of part(2). Finally, part (3) is clear by combining parts (1) and (2). O
Lemma 3.1.2 We have the following facts:

1) If 1/X\ € £y ; then the inclusion {1 C cs strictly holds, where 1/X = (1/X;)%2;.
7/5=1

(2) The space ¢; cannot be included in cs}).

Proof. For (1), suppose 1/\ € ;. Then, the inclusion ¢; C ¢7 holds by (3) of Lemma
2.2.2. Thus, the inclusion ¢; C cs* is strict by (2) of above Lemma. For (2), consider
the sequence e; = (1,0,0,---). Then, by (2.2.2), we get that Ag(e;) = A/ for all
k> 1and so Ay(ey) = A 0, (1/A) > 1 for all n (as A, > 0 for all k). Thus A(ey) ¢ co

which means that e; ¢ csé while e; € ¢; and hence ¢; ¢ cs(’}. This ends the proof. O

Remark 3.1.3 As in part (1) of Lemma 3.1.2, we will use the convention 1/\ =
(1/X;)32,. Also, since A is a sequence of positive reals; we deduce that 1/\ ¢ csg, but
its sum sequence o(1/)) is increasing whose positive terms and this leads us to the

equivalences: 1/\ € {1 <= 1/\ € cs <= 1/\ € bs.

Lemma 3.1.4 We have the following:

(1) The inclusion ¢* Nbs* C ¢} holds.
(2) The equality ¢* N bs* = ¢y N bs* holds.

(3) The inclusion cs* C ¢y Nbs* strictly holds.

Proof. This result is immediate by Lemma 2.1.4. To see that, take any x € ¢* N bs”.
Then x € ¢* as well as € bs*. Thus A(z) € ¢ and A(z) € bs. This implies that
A(z) € ¢ N bs and so A(x) € ¢y (as ¢ N bs C ¢y by (1) of Lemma 2.1.4). Thus

x € ¢y which proves (1). Similarly (2) is obtained from (2) of Lemma 2.1.4. Also, the
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inclusion cs* C ¢y Nbs? is immediate by (1) and (2) of Lemma 3.1.1. To show that this
inclusion is strict, there must exist a sequence z € ¢y N bs such that z ¢ cs (as we have
seen in proving (3) of Lemma 2.1.4, where ¢s C ¢ N bs is strict). This implies that
0(z) € co(A)Nly while o(z) ¢ c. Now, let y = o(z). Then y € co(A)N Ly while y ¢ c.
Also, define a sequence z in terms of y by using (2.2.8), that is z = A(AA(y) )/A(N).
Then, as we have already shown in the proof of Theorem 2.2.6, we can show that
A(x) = Aly) = z € ¢p as well as A(z) = y = 0(2) € lo \ ¢. Thus, we deduce that
x € ¢ and z € bs* \ ¢s, that is € ¢y N bs* while z ¢ cs* and hence the inclusion

cs™ C ¢y Nbs™ is strict. This completes the proof. O

3.2 Preliminary Results

In this section, we prove some preliminaries which will be used to prove our main
results in the next section and for this purpose, we are in need to quoting some addi-
tional conventions and terminologies.

In what follows and for simplicity in notations, we define the following two positive

real terms for every positive integer n

n

“ 1 1
j=k "7 J

=k
Further, if 1/\ € ¢;; then the limits s} — s; and ¢} — ¢, (as n — o0) exist for each

k > 1. Thus, we can define the following three positive real sequences s = (sg), t = (t)

and u = (ug) by

=1 =1 Ak
Sp =\ — ., oty = A\ — and wu=-—o-"—, kE>1). (3.2.2
R N )Y e k2D (322)

Moreover, it can easily be deriving the following equalities:

sp=trur (kE>1) and sp=trur (1 <k<n), (3.2.3)
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te=1+A(sg) (k>1) and r=14+A(sp) (1<k<n), (3.2.4)
where the difference is taken over k, that is A(s}) = s} — sp_; for every k < n.

Lemma 3.2.1 Let 1/\ € ¢y and assume that A(u) € c. Then, there must exist a

positive integer ko satisfying all the following:
(1) 1 <wu, <k forallk > ko and so 0 < limy_,o A(ug) < 1.
(2) There is a positive real 6 < 1/2 such that —6 < A(ug) <1—46 for all k > k.

(3) The difference sequence ( A(\g) )iozko is strictly increasing to oo.

Proof. Suppose that 1/A € ¢; and A(u) € ¢ which means that limy_,. A(uy) exists.
Then limy_,o, ux/k exists (due to the equality between these two limits [29, 30]). Thus
(ur/k) € ¢ C L. Also, we claim that there is a positive integer k; such that u/k < 1
for all & > ky or ugr1/(k+1) < 1 for all k& > k; which can equivalently be written
as Mer1/(Mgr1 — Ak) < k+ 1 for all £ > k;. Otherwise, suppose on contrary that the
sequence A = (\;) has a subsequence (g, )=, such that Ay ., /(Ak,,, — Ak,) > ke >
r+1 for all » > 1. Then, it follows that A, , < X, ((r+1)/r) and so Ay, ,, < A, (r+1)

for all » > 1. Thus, we deduce that 1/(r + 1) < Ay, /Ak,, for all > 1 and so

.
(1/Ak,., ) ¢ €1 which contradicts with our hypothesis (1/A € ¢;). Hence, our claim is
true (as ugyq > 1 for all k). Further, since limy_,o A(uy) = limy_o ug/k ; we find that
0 < limy 00 A(ug) < 1. Moreover, it can easily be shown that limg_,., A(uy) # 1. For,
if limy_, o A(ug) = 1; we can similarly get A\, < ak for some positive real a > 0 which is
a contradiction with 1/\ € £;. Therefore, we conclude that 0 < limy_,o, A(ug) < 1. To
prove (2), assume that a = limy_,o A(ug), where 0 < a < 1. Then, for every positive

real € > 0, there is a positive integer k' = k’(¢) such that |A(ugy1) — a|l < € and so

a—e<Augyr) < a+e forall k> k. Now, choose a positive real 6 < 1/2 such that
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(1—a)/4i<0<(l—a)/2andsod < (1—a)/2 < 26. Then, by takinge =(1—a)/2—06
with its ko = k/(€), we get 0 < € < 1/2 and find that a+e = (14+a)/2—9 <1—¢ and
a—e> —e=0—(1—a)/2 > J—25 = —J. Hence, we deduce that —§ < A(ugy1) < 1—9
for all k > ko, that is =0 < A(ug) < 1—9 for all k> ky. To prove (3), we obtain from
(2) that A(ugs1) < land so 1+ A A(1/A(MNgs1) ) < 1 forall k& > ky. This implies that
A(Mrg1) > A(Xg) for all k > ky. Thus, the sequence (A(Xg) ),—,, is strictly increasing
and cannot be bounded (as 1/\ € ¢1) but must tend to co which proves (3). Finally,

by taking ky = max{ky, ko }, we get the common integer kg in parts (1), (2) and (3). O

Lemma 3.2.2 Let 1/ € {1 and assume that limg_,oo A(ug) = a (0 < a < 1). Then,

we have limg oo t, = 1/(1 — a) and limg_,oo A(sg) = a/(1 — a).

Proof. Suppose that limy . A(ug) = a, where 0 < a < 1 by (1) of Lemma 3.2.1.
Then, for every positive real € > 0, there is a positive integer k" such that |A(ug11)—al <

e and so |1 + A\eA(1/A(Mgy1)) — a] < € for all k > k'. Thus, it follows that

‘ l—a ( I 1 )' _ ¢
Ak AXg)  A(Mgs1) Ak
for all £ > k' and by taking the sum of both sides from & = n to oo and noting that

A(Mp) = 00 as k — oo by (3) of Lemma 3.2.1, we get

0% wim <2 (s s S B

Dividing both sides by the positive number > ;7 1/ (as 1/A € ¢; and Ay > 0 for all

[e.9]

TL

k); we obtain that |(1 —a) — 1/t,| < € for all n > k’, and since € was arbitrary; we
deduce that 1/t, - 1—aor t, — 1/(1 —a) as n — oo. The second limit is immediate
by (3.2.4) and this completes the proof. O

Lemma 3.2.3 Let 1/\ € {1 and suppose that t € c. Then, all the following are true:
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(1) limgyoo tx > 1 and A(s) € ¢ such that limy_,o A(sg) > 0.

(2) If limy_oo tx = b; then limy_oo A(ug) = (b—1)/b and limy_,oo A(sg) =b— 1.

o0

(3) There exists a positive integer ko such that the difference sequence (A(Mg) )i_y,

is strictly increasing to oo.

Proof. Suppose that 1/A € ¢; and ¢t € c¢. Then, it follows by (3.2.4) that A(s) €
¢ and so limyg oo A(sg) = limy oo Sx/k > 0 (since s, > 0 for all k). Again, by
(3.2.4) we get limy_ ot > 1 which is (1). To prove (2), we first show that t € ¢
implies A(u) € c¢. For this, it follows from ¢ € ¢ that A(s) € ¢ and A(t) € ¢
such that limg oo A(ty) = limg_oo tx/k. Thus, from (3.2.3), we find that A(sy) =
A(tpug) = tA(ug) +up_1 A(tg) which implies that limyg o A(sg) = limy oo te( Aug) +
uk—1/k) exists. Thus (A(ug) + ug_1/k) € c. On other side, we have limy_,o A(sg) =
limg oo A(trug) = limg oo (tpug) /b = limg o0 ti(ug/k). Hence (ug/k) € ¢, and since
(k/(k+1)) € ¢; we find that (ux_1/k) € c. Therefore, we deduce that A(u) = (A(ug)) =
(A(ug) +ug_1/k) — (ug—1/k) € c¢. Now, if limy_,o t; = b; then by Lemma 3.2.2 we get
limy 00 A(ug) = (b—1)/b and the other limit is trivial by (3.2.4). Finally, part (3) is

now immediate by (3) of Lemma 3.2.1 because A(u) € ¢. This ends the proof. O
Lemma 3.2.4 Suppose that 1/\ € ¢1. Then, we have the following equivalences:

(1) A(u) € cif and only if t € c.

(2) A(u) € buy if and only if t € bv;.

(3) sup, > r_q |A})| < oo if and only if A(u) € buy.

Proof. Suppose that 1/\ € ¢;. Then, the equivalence in part (1) can be obtained by

combining Lemma 3.2.2 and (2) of Lemma 3.2.3. To prove (2), let us first note that
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buv; C ¢ by Lemma 1.3.1. Thus, if A(u) € bv or t € bv; then A(u) € ¢ as well as
t € c. Hence, in both direction of current equivalence, we have A(u) € ¢ and t € c.
Therefore, it follows by (2) of Lemma 3.2.1 that there are 6 > 0 (real) and ky > 1
(integer) such that 0 <1 — A(ug) <1+ 0 for all & > ko. Thus (1 — A(ugy1) )iy, s a
convergent sequence of positive reals with non-zero limit, that is (1 —A(ug11) ) € ¢\ co.
Also, it is obvious that ¢ is a convergent sequence of positive reals with non-zero limit,
that is ¢ € ¢\ ¢o. Further, it follows by Lemma 3.2.2 and (2) of Lemma 3.2.3 that
limyg oo te(1—A(ugy1)) = 1. Hence, if A(u) € bvy or ¢ € buy; then (tx(1—A(ugt1))) €

bvy and so (A[tk(1 — A(ug1))]) € ¢1. Therefore, we obtain that
(Al = Alure))]) = (A1 = Aunn)) + (1= Aw)Alt) ) € 61

Now, if t € bvy; then A(t) € ¢, and so ((1 — A(ug))A(tx)) € ¢, which implies that
(tkA(1 — A(ugs1))) € ¢ and hence (A(1 — A(ugs1))) € 41 (as t € ¢\ ¢) and
this means that (1 — A(ugy1)) € bvy and so A(u) € bvy. Similarly, if A(u) € buy;
then we get (1 — A(ugy1)) € bvy and so (A(1 — A(ugs1))) € ¢ which implies that
(thA(1 — A(ugs1))) € ¢1 and hence ((1 — A(ug))A(ty)) € £1. Thus (A(tg)) € 4
(as (1 — A(ux)) € ¢\ ¢o), that is A(t) € ¢; and so t € bvy. Finally, to prove (3), let
us first note that ¢ € ¢ in both direction of current equivalence (as we have already
shown in proving (2)) and hence there is an integer ko > 1 such that (A(A\g))i2,, is
strictly increasing to oo by (3) of Lemma 3.2.1 (or Lemma 3.2.3). Now, let n > 1.
Then, for every k < n, we have ty — t} = (tpr1/AAnt1) ) A(Nr) and so Aty — &) =

(tne1/AAMnt1)) (ANg) — A(Ak—1) ), where ty =t = 0. Thus, it follows that

8]~ |AEDI] < A0 - AR = 575 1800 — M)
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and by taking the summation from k£ =1 ton (n > 1), we get

n

> (A = 1AE)])

k=1

A(An)

< Z ’ IA(tr)] = |AR)] | < Mt”“m

k=1

for some M > 0. But, we have (t,11A\,)/A(M+1)) € lo and it follows that
(Ot AR = 2or [AWY] )2, € le. Thus, we deduce that (Y 7_, |A(t))]) €
loo <= (D 1_1 |A(tr)]) € loo. Thatis sup, Y, [A(t})] < 00 <= > 7, |Aty)| < o0

which can equivalently be written as sup, > ,_, |A(t})| < co <=t € buv;. This ends

the proof, since t € bv; <= A(u) € bv; by part (2). O

3.3 Main Results

In the last section, we prove the main inclusion relations between the old and new
sequence spaces of series. We essentially characterize the case in which the inclusions

bs C bs*, cs C ¢s” and csy C cs)) hold, and discuss their equalities.
y 0

Theorem 3.3.1 Let u = (uy) be defined by up = A\g/(Ax — Ng—1) for all k > 1. Then,

we have the following facts:
(1) The inclusions cs C cs* and bs C bs* hold if and only if 1/\ € €1 and A(u) € bvy.
(2) The equalities cs* = cs and bs* = bs hold if and only if u € lo, and A(u) € bvg.

(3) The inclusions cs C cs* and bs C bs* strictly hold if and only if 1/\ € {1,

u ¢ Ly and A(u) € buy.

Proof. To prove (1), suppose that the inclusions cs C c¢s* and bs C bs* hold. Then,
we have e; € cs and e; € bs, where e; = (1,0,0,---). Thus, we must have e; € cs* as
well as e; € bs*. This implies that A(e;) € ¢ and A(ey) € Ly, respectively. Also, by

using (2.2.5), we find that A, (e;) = A\ 0, (1/A) = A\ Sr_ (1/A) for all n > 1. Thus,
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we conclude that o(1/)\) € ¢ and o(1/)) € ls and hence 1/\ € ¢s and 1/\ € bs,
respectively. Therefore, in both cases, we get the same result which is 1/ € ¢ (see
Remark 3.1.3). That is 1/\ € ¢; is necessary condition for both given inclusions (if
1/ ¢ {1; then both inclusions cannot be satisfied, see Example 2.2.9). Thus, we
assume that 1/\ € £; and then it can easily be seen that the inclusions cs C ¢s* and
bs C bs* hold if and only if A € (cs,c) and A€ (bs, ), respectively. To see that, we

have the following equivalences:

A

cs Cesd < weces)forallz €cs <= Az)ecforallz €cs <= A€ (cs,c),

bs C bs* <= xcbs forallz € bs <= A(x) €l for allz € bs <= A € (bs, Ly,).

Thus, to obtain the other necessary and sufficient conditions for these two inclusions, we
have to find the required conditions for A € (¢s,¢) and A € (bs, £s,) by means of Lemma
1.3.14 with A instead of A. For this, it follows from (3.2.1) and the definition of our
matrix A that A,z = ty for 1 <k <nand Mg = 0 for k > n, where n, k > 1. Thus, by
using the entries of A, we deduce from condition (1.3.2) that lim,, Ao = limy, o ty
exists for every k > 1. But these limits actually exist for all £ > 1 (as 1/\ € ¢1), where
limg, ooty =t = A(M) D ;2 1/); for each k. Thus, condition (1.3.2) is already
satisfied for A. Also, condition (1.3.7) trivially holds, since Ais a triangle and so
Mx = 0 when k > n for each n > 1 and this implies that limy_, Mg = 0 for every
n > 1. Thus, the common condition (1.3.6) is left, and this condition together with
1/X € £y are the necessary and sufficient conditions for both inclusions. Moreover, for

every n,k > 1 we have

—A(t); (k<n),
nkr1 = § AA) /A (k=mn),
0; (k>mn),

>
>

nk —
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5 [ = | = 28 ()l = 1+ 2% S A,

k=1 k=1
and since (—t7 +A(N,)/A\,) € loo; we deduce that sup, > -, Ak — Anpg1] < oo if and

only if sup, S2r_, |A(t2)] < co. Therefore, condition (1.3.6) is satisfied for A if and
only if sup, > p_; |A(t})] < oo (or equivalently A(u) € buy by (3) of Lemma 3.2.4).
Consequently, the inclusions c¢s C cs* and bs C bs* hold if and only if 1/\ € ¢; and
A(u) € buy. To prove (2), we can use the equality (2.2.3) mentioned in Lemma 2.2.1.
That is, we have the equality xp — Ag_1(x) = ug [Ar(x) — Ag—1(x)] which is satisfied
for every x € w and all £ > 1. Thus, by taking the summation of both sides from

k=1ton >1, we get the following relation:

ou() = Ar (@) = 3w [Anle) = Aia(@)], (0> 1)
k=1

which can be written as follows:

3

On(@) = A1 (2) = tnsy An (@) =Y Alugr) Ap(z), (0 >1). (3.3.1)

k=1

A = ¢s and bs* = bs hold; we deduce from (3.3.1) that

Now, if the equalities cs
u € Ly and A(u) € bu;. But bu; C ¢ and so A(u) € ¢ such that limg_,oo A(ug) =
limg oo ux/k = 0 (since u is bounded) which implies that A(u) € bvy, where byy =
buy N cy. Conversely, if u € £, and A(u) € bug; it follows from (3.3.1) that x € cs* <

A = ¢s and

x € cs as well as x € bs® < x € bs, which means that both equalities cs
bs* = bs are satisfied (we may note that: (i) u € €y, = 1/ € {4, (ii) zy € cs for all
xr € cs <y € buy, and (iii) xy € bs for all x € bs < y € byy). Finally, part (3) follows

from (1) and (2). This completes the proof O

Corollary 3.3.2 If the inclusion cs C cs* holds; then for every x € cs we have

Yy Atz ,}5202% %= IE&Z% o



That is Jgrgozn: <A()‘k)z ¥ )xk 7}5&2 ( i%)

k=1 i=k

Proof. Let x € c¢s. Then, for every n > 1, we have

x):kzi:thk Zthk (i %)(Zn:A(Ak)xk)

j=n+1"17

Thus, we obtain that
An(2) =Y tiap+tosr (Gul2) —ou(z)) (0> 1), (3.3.2)
k=1

where &, (z) is given by

5(0) = 55 D (B0k) = B0 le) (02 1)

That is &(z) = A(o(z)) and A is the matrix A with the sequence (A(\z41)) instead
of (Ax), where (A(Axy1))iy, is strictly increasing to oo (for some integer ko > 1 by
Lemma 3.2.1). Hence, we conclude that lim,, . 6,(x) = lim,_, 0,(x) by regularity
of A and A (see (1) of Lemma 2.2.1). Therefore, our result is now proved by going to

the limits in both sides of (3.3.2) as n — oo. O

Theorem 3.3.3 The inclusion csy C csy strictly holds if and only if there exists a
positive real number 0 < a < 1 such that A(ugy1) = a for all k > 1 (equivalently:
csg C esy strictly holds if and only if there exists a positive real number b > 1 such that

ty = b for all k > 1). Furthermore, the equality cs) = csy cannot be held.

Proof. Assume A(ugi1) = a (0 < a < 1) for all £ > 1, ie. (Aug), Aug),--+) is

constant. Then 1 + \A(1/A(Mry1)) = a and so 1/A(Ag) — 1/A(Mes1) = (1 — a)/ M.
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Thus A(A) is increasing to oo and by taking the summation from k& = n to co we get
tn = 1/(1—a) foralln > 1 (t, is constant). In such case, it is obvious that 1/\ € ¢; and
A(u) € bvy. Thus, it follows by (1) of Theorem 3.3.1 that the inclusion ¢s C es* holds.
Also, for any x € csq, we have x € cs* (since csy C ¢s C ¢s?). Thus, we deduce from

Corollary 3.3.2 that lim,, o Ap(z) = (1/(1 — a) ) lim, o 0n(z) = 0 which means that

x € esd. Hence, the inclusion c¢sy C esp holds. Conversely, if the inclusion ¢sy C ¢s)
0 ) 0 Y, 0

~
~

holds; then for each k > 1, we have lim,, ,o, A, (éx) = 0, where é, = e — ex11 € ¢S
for all k. But lim, e An(éx) = —A(tge1) and so A(tgyy) = 0 for all & > 1. Thus,
there exists a positive real b > 1 such that t;, = b for all £ > 1 (as t; > 1). Hence
te/ AAK) —tes1 /A1) = b/A(Ag) —b/A(Mgr1) and so 1 —1/b = 14+ N A(1/A(Ngy1))
which yields A(ugy1) = (b—1)/bfor all k > 1 and 0 < (b — 1)/b < 1 and this proves
the given equivalence. Further, if the inclusion csy C csy holds; then it must be strict,
since the equality can only be held if a = 0 (as the equality implies that csg C csy and

so ji C ii*, see (2) of Theorem 3.3.1) which is impossible (as A(ug) # 0 for any ). O
At the end of this chapter, we give some examples to support our main results.

Example 3.3.4 To each non-negative integer m > 0, we will associate other spaces
csy, es* and bs* depending on m (as particular cases of our spaces) such that the
inclusions csy C csy), cs C es™ and bs C bs* strictly hold by Theorems 3.3.1 and 3.3.3.

That is, it will be there an infinitely many number of these A-sequence spaces according

to m. For this, define the sequence A = (\;) by

(k+m+1)!

(k>1).
Then, it can easily be deriving the following (k,n > 1):

AN = (m+2) [(k +m)!/(k — 1)
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up, = (k+m+1)/(m+2), A(ug+1) = 1/(m +2) (constant)

1 1 1 1
A_j:j(j+1)-~(j+m+1): m+1'2 ( )lgﬂ j+i+1}

11 Z () I 1 1 (k—1)! n!
— N ( m+1‘ E+i n4+i+1] m+1[(k+m) (n+m+1)

o) — meb-Gen/e)

— 1 m+2
A(Ag) Zk N = (constant)

m +
i) =g | <x>—;xk<’z+_?>/<“+;”“>
i) = 23 () /()

Further, from the equality ¢, = (m—|— 2)/(m~+1); we deduce the following new or known

formulae for summation (m > 0 and k£ > 1):

i m+1 1
= nn+1)---(n+m+1) l{:(k+1)---(k+m)

Zn n+m+1 - m—i—l'Z ( )/k+2)

n=~k

!

Z(_ly @)/(k +i) = k(k + 1)7-7?'- (k +m)

S/

n=

Remark 3.3.5 We must note that the condition 0 < a < 1 (or b > 1) is necessary in
Theorem 3.3.3, see Example 2.2.9 for the case a = 1 in which i ¢ i as well as @* ¢ i,

where 11 is any of the spaces bs, cs or csy.

Example 3.3.6 Consider the sequence )\, = o, where o > 1. Then, we have the

following:
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A= (Oé, C¥2, aga @4,"'),

A(N) = (a, ala —1), a®(a — 1), a*la —1),-- )

(8] (8] (8]
— (1 ) (e
Y (’a—l’a—l’a—l’ <
1
A :<1,—,0,0,0,~-->eb,
(u) a—1 Vo
t:(i,1,1,1,1,--->ebv1.
a—1

Thus, we note that u € f, A(u) € bvg and A(uy) # 0 while A(ug) = 0 for all k& > 2

(also t; # 1 while t;, = 1 for all £ > 1). Hence, it follows by Theorems 3.3.1 and 3.3.3
that bs* = bs and cs* = cs while csy ¢ cs) as well as csy ¢ esg (as Augyy) is not

constant for all k£ > 1).

Example 3.3.7 We have the following particular case:
A= (2, 6,12, 36, 72, 216, - - - ),
AN) = (2,4, 6,24, 36, 144, - -+ ),
) €l
1

1
757 _57 ) gbvlv

11
2" 2
8 6 4 6 46
t_(gagvgagagaga'”>¢bvl-
Thus, it follows by Theorems 3.3.1 and 3.3.3 that i ¢ i* as well as ji* ¢ i, where [i

is any of the spaces bs, cs or csy (note that: 1/\ € 1 and u € {).
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4 KOTHE-TOEPLITZ DUALITY

In the present chapter, we conclude the a-, 5- and v-duals for the A-sequence spaces
of bounded, convergence and null series. Also, we study some additional properties of
their duals. This chapter is divided into three sections, the first is devoted to study the
a-duals, the second is for the - and «-duals and the last is to deduce some additional
results. The materials of this chapter are part of our research paper [49] which has
been published in the Global Sci. J. on 2022.

By p, we denote any of the spaces ¢y, ¢ or /., and i stands for the respective one
of the spaces csg, cs or bs, and so ji* is the corresponding one of the A-spaces csp), cs*
or bs*. By 6, we mean any one of the duality symbols «, 3 or 7, that is 6 := «, /3 or 7.
Thus, the 6-dual of a sequence space X is the a-, 5- or y-dual of X which was defined
by (1.1.2) as X = {a € w : ax € (9) for all x € X}, where () = {1, {8) = cs and

(v) = bs. For example, it is known that ;’ = ¢; (Lemma 1.3.4), and the duals of ji are

given in Lemma 1.3.5, and we are going to find out the §-duals of .

4.1 The o-Duals

In the first section, we obtain the a-duals of the A\-sequence spaces ji* of bounded,

convergent and null series, where
{(i*}* ={acw: ar € (, for all v € 3*}.

For this, we will use our usual notations and terminologies given in previous chapters.

First, we define the sequence u = (uy) of positive reals as follows:

U =

A A
= k>1). 4.1.1
A Moo (k>1) (4.1.1)
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Next, every sequence z = (z3) € w will be connected with another sequence y = (yx)

~

by the relation y = A(x), and we then say that y is the sequence connected with x by

y = A(x) which together with (2.2.6) yields that

pe= M) =Y M) and A = Ale) (k2 1)

Then, by using (2.2.8), we have zp = A(MNA(yx))/A(Ng) (for all & > 1) which can

equivalently be written as follows:

o= A1) + w2 (y) = Alyer) +un(Alys) — Alye 1)) (B>1). (4.1.2)

Thus, here and in what follows, we assume that x and y are connected by y = A(x)

which implies the validity of (4.1.2) from which we obtain that

xp = upyp — (2ur — Dyr_1 + (up — Dyp_o (k>1), (4.1.3)

where z1 = u1y; = 11 and xo = usys — (2us — 1)y;.

~

Remark 4.1.1 It is obvious that = and y are connected by y = A(x) if and only if
(4.1.2) is satisfied. Also, it must be noted that z € p* <= A(y) € i <=y € p. In
fact, it follows by Theorem 2.2.6 that for every = € ji* there exists a unique y € pu
given by y = A(x) and conversely, for every y € u there exists a unique z € i given

by (4.1.2) and we have ||z|[,» = ||y|lc by Theorem 2.2.5.
Now, we may begin with the following main result which shows that the spaces cs,

cs* and bs* have the same a-duals for the same sequence ), i.e., their a-duals depend

only upon .
Theorem 4.1.2 The a-duals of the spaces i’ are given by
{ﬂ’\}a = {a cw: au= (aguy) € 51},

where u = (uy) is defined by uy, = N/ A(Ng) for all k > 1.
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Proof. For any z € ji*, let y = (yx) be the sequence connected by y = A(x) Then

y € p (see Remark 4.1.1) and for every a = (a,) € w, we can use (4.1.3) to get

AnTyp = ApUnYp — an(2un - 1>yn—1 + an(un - 1)yn—2 == An(y) (n Z 1)a
where A = [an]7%—, is a triangle defined by
A ; (k=
—an(2u, —1);  (k=n-1),
Ang =
an(up —1); (k n—Q)
0; (otherwise).
That is, our A is the following triangle:
[ aw 0 0 0 |
—CLQ(QUQ - 1) (05X 0 0
ag(U3 — 1) —&3(2“3 — 1) asus 0
A= 0 ag(ug — 1)  —ag(2uy — 1) a4y
0 0 a5(u5 - 1) —CL5<2U5 — 1)

Thus, it follows by (4.1.4) that ax = A(y) for every z € i* with y = A(z) € pu. Also,

by using (4.1.4), we deduce that
a€{i*}" < ax el forala €t < A(y) € (1 forall y € p < A € (u, (1),

where A(y) exists for every y € p (as A is a triangle by Lemma 1.3.7). This, together

with Lemma 1.3.8 (when p = 1), leads us to conclude that

E Ank

keK

a € {/ﬁ} — supz

n 1

< 00,

where K stands for the collection of all non-empty finite subsets of positive integers.
On other side, it must be noted that u; = 1 and so u; = 2u; — 1. Thus, for each n > 1,
it follows by definition of A that |}_, ,cank| < |a,|(2u, — 1) for every K € K. Thus,

we obtain that

n=1 |keK n=1
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for every K € IC which implies that

sup Z Z Qnk

Kek n—=1 |kek

< Jan(2u, — 1). (4.1.5)

Besides, by taking K, = {1,3,5,---,2m — 1} € K for any positive integer m. Then,

for each n > 1, it can easily be seen that

lan|(2u, — 1); (n < 2m),
Z Qnk| = |a2m+1|(u2m+1 - ]-) ; (n =2m + ]-)a
k€ Km 0; (n>2(m+1)).
Therefore, we obtain that
2m 2m fe’e)
Z |an‘(2un - 1) - Z Z Ank| = Z Z Qpk| — |a2m+1|<u2m+1 - 1)
n=1 n=1 |keK,, n=1 |keK,,
2m (o]
= Z|an|(2un—1) < Z Z Ani| < sup Z Zank
n—1 n=1 |keKm Kek 2 |kek
= Z|an| 2u,, — 1) <SupZZank (m>1)
Kek 20 |kek

and by taking the supremum over all positive integer m, we get

Z|an| 2u, — 1) < sup Z Zank

nlkeK

(4.1.6)

Hence, by combining the inequalities (4.1.5) and (4.1.6), we deduce that

[S(léplc ; ’;ank = ;|an|(2un - 1)

which yields that
a€ {p}” <:>Z |an| (2u, — 1) < oc0.

Further, since u,, > 1 for all n; we find that u,, < u,4+u,—1 < 2u,, and so u, < 2u,—1 <
2u,, for all n, which implies that Y > |a,|(2u, — 1) < 0o <= > 7 |a,u,| < oo.
Consequently, we deduce that a € {i*}* <= > °° |ay,u,| < 0o <= au € ¢, which

proves our result and so we have done. O

26



Corollary 4.1.3 The a-duals of the spaces i are given by

{ﬂk}a = {(ak/uk) s a=(ag) € El},
where u = (uy) with ug, = A\g/A(Mg) for all k > 1.

Proof. This formula of {/i*}* is immediate by Theorem 4.1.2. To see that, let’s denote
the new formula of {72*}* by D®. Then, we have to show that {zi*}* = D®. For this, let
a € {*}*. Then b = au € {1 by Theorem 4.1.2. Now, since b € £; we find b/u € D?.
But, from b = au, we get b/u = a and so a € D® This implies that {*}* C D°.
Conversely, let a € D*. Then a = (b /uy) for some b € ¢1. Thus au = (by) € ¢; and so

a € {i*}* by Theorem 4.1.2 which means that D* C {i*}*. Hence {i*}* = D~ O

Remark 4.1.4 We have the inclusion {z*}* C ;. To see that, it follows by Theorem

4.1.2 that a € {p*}* = au € ¢;. But u,, > 1 for all n and hence a € /;.

4.2 The (- and vy-Duals

In this section, we obtain the - and ~-duals of our spaces ji*, where
{i*Y ={acw: ax € cs for all x € 3},

{ﬁ)‘}W: {a € w: ax € bs for allxe[ﬁ}

and we may begin with the following theorem which shows that g-dual of the space
bs* is different from those of cs) and cs*. Thus, we will use the symbol 7 to denote
any of the spaces csy or cs*, where 7 is the respective one of the spaces csg or cs, and

so 7 is the corresponding space cq or ¢, respectively. Also, for any sequence a = (ay),

we define its associated sequence a = (ay), via the terms of a, as follows:

~ a
ap = A(a/kJr]_uk-Jrl) — Ag+1 = )\kA (ﬁ) (k’ > 1) (421)
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Theorem 4.2.1 The B-duals of the spaces fi* are given by
{bsA}ﬁ - {a cw: au= (aug) € cg and a = (ay) € bvl},

{ﬁ,\}ﬂ _ {a cw: au= (aruy) € b and a= (ax) € 501},

where i stands for any one of the spaces cs) or cs*, and the sequences u and a are

given by (4.1.1) and (4.2.1), respectively.

Proof. For every = € ji*, let y € p be the sequence connected by y = A(m) Then,
for any a = (ax) € w, we may use (4.1.2) and (4.2.1) with help of Abel’s formula of

summation by parts, to derive the following relation:

Zkzlaiﬂk = Zk: arA(yr-1) + Z akUkA (yr)
n—1 n—1
= Z ak+1A(yk) + antn A(Yn) Z Alar1ue+1) A(yr)

= @nunA(yn) - ZkzldkA(yk)

n—2
= a'nunA(yn) - &n—lyn—l + ZkzlA(dk—f—l)ykv

where ag = yo = 0 and the sum on right-hand side is zero for n = 1,2. Thus, we have

n—2
Zakxk = U AWYn) = Gnoatno1 + > Alare)ys (R >1) (4.2.2)
k=1 k=1

which can equivalently be written as follows:

n—2

Zakxk - Z A ak+1>yk - (anun + an l)yn 1 + AnUnYn = A ( ) (n Z 1)7 (423)
k=1 k=1

where A = [a,];%—, is a triangle defined by

Uty ; (k =n),

B (anun + an-1); (k=n—1),

T Alars) (k<n-2),
0; (k> mn).
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That is, the infinite matrix A is the following triangle:

a1uq 0 0 0
—(agus + ay) asUs 0 0
A A(&g) —(CL3U3 + &2) asus 0
- A(dg) A(dg) —(CL4’LL4 + &3) AUy
A(dg) A(dg) A(&4) —(CL5U5 + &4)

Thus, it follows by (4.2.3) that Y _,_ axzy = A,(y) for all n and so (3_,_,arzy) = A(y)

for every z € i* with y = A(z) € p. Hence, we immediately deduce that

aE{/]A}B<:>ax€csf0rallx€ﬂ’\<:>A(y)chorallye,u<:>A€(u,c).

This leads us to conclude the following three equivalences:
a € {bs*}P <= A€ (l,0),
a € {cs)}P <= A€ (c0),

a € {es)}? <= A € (e, 0).

Thus, in the first case, it follows by (1) of Lemma 1.3.10 that a € {bs*}® <= the

following conditions hold:

oo
Sup Zk:1|ank\ < 00,

lim a,; = a; exists for every k > 1,
n—o0

lim >
dan Dy lane = oul =0

On other side, for every n > 1, it follows by definition of A that

oo n—2
Z |lank| = Z |A(Gr41)] + |anun + an—1] + |anun|
k=1 k=1

which implies that

oo
supZ|ank|<oo<:>au€€OO and a € by,
k=1

29

(4.2.4)

(4.2.5)

(4.2.6)



where @ € bvy = a € ¢ C l and 50 (auy, +ay—1) € Lo Whenever au € l,. Also, it is
obvious that (4.2.5) is satisfied and so it is superfluous, where lim,, oo anr = A(agr1)

and so ay = A(ayy1) for every k > 1. Further, for each n > 1, we have

> "k — ar] = |anttn + an_y + AGn)| + lant, — Alane)| + Y [Aldrs)]
k=1 k=n+1

o
= |anun + dn| + |anun +a, — dn+1| + Z |A<dk+1)| .
k=n+1

Besides, it can easily be seen that

oo n
nh_)rgo kz |A(Gry1)| =0 <= T}l_r)lolokz |A(Gg41)| exists <= a € buy
=n-+1 =1

and
(anty + ay) € co, (Apty + Gp — Any1) € g < au € ¢y, @ € ¢y < au € ¢y,

where a € ¢ is implied by au € ¢y. To see that, we have uy > 1 and so |ax| < |aguy|
for all k. Thus au € ¢y implies that a € ¢y as well as A(au) € ¢y. Therefore, it follows
that A(au) —a € ¢g and so a € ¢y by (4.2.1), that is au € ¢y implies both a € ¢y and

a € cg. Hence, condition (4.2.6) can equivalently be written as follows:

o
lim Z |an, — ag] =0 <= au € ¢y and a € bv;.

Consequently, we conclude that
a € {bs*}’ <= au € cy and a <€ b,

which proves the given formula of {bs*}? (note that: for our triangle A, both conditions
(4.2.4) and (4.2.5) are implied by the strong condition (4.2.6)). Next, in the second
and third cases, we have a € {cs*}? <= A € (c,¢), and a € {cs)}’ <= A € (co,¢).

Thus, it follows by (2) and (3) of Lemma 1.3.10 that

a € {cs*}’ <= (4.2.4) and (4.2.5) hold, and lim Z:o_lank exists,

n—oo
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a € {cs)}’ <= (4.2.4) and (4.2.5) hold.

But, we have already show that (4.2.5) is satisfied and so it is superfluous. Similarly, it
can easily be shown that the other condition of existence of the limit lim,, o0 > pe Gk
is also satisfied and so it is redundant, where Ziiﬂnk = —ay for all n > 1 and hence

lim,, o Zzilank = —a, exists. We therefore deduce that
a € {cs’} <= a € {es)}’ <= (4.2.4) holds <= au € (o, and a € bu,
which proves the given formula of {7*}# and this ends the proof. O
Moreover, the spaces fi* have the same v-dual for the same sequence A, as follows:
Theorem 4.2.2 The v-duals of the spaces i are given by
{/1’\}7 = {a ew: au= (aru) € ls and a = (ax) € bvl},
where the sequences u and a are given by (4.1.1) and (4.2.1), respectively.

Proof. Let z € i* be given and let y € u be the sequence connected by y = A(x)
Also, for every a = (ax) € w, let A be the triangle defined as in the proof of Theorem

4.2.1, above. Then, we can similarly show, by using (4.2.3) with Lemma 1.3.9, that
ac{i*} <= Ac (u,ls) < (4.2.4) holds <= au € l,, and a € bv;

which proves the present result. O

4.3 Additional Results

We my begin with the following remark concerning with our main results in the

previous sections.

Remark 4.3.1 We may note the following:
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(1) It must be noticed that {csy}? = {cs*}? for 6 = a, B and v, while {bs*}? = {i*}?

for only = o and 7. Also, we may observe that {7*}? = {i*}".

(2) As we have shown in the proof of Theorem 4.2.1, we have uj, > 1 and so |ax| < |aguy|
for all k. Thus, if au belongs to any of the spaces {1, ¢y or {; then a must belong
to the same space. It follows that {*}? C (., specially {i*}* C ¢, and {bs*}® C co.

Besides, if u ¢ {,; then we also have {ii*}? C ¢, for § = 3 and 7.

(3) In particular, if a € {bs*}?; then a € ¢y and so a € ¢y which implies that & € bvy.

Thus a € {bs*}? <= au € ¢y and @ € bv; <= au € ¢y and @ € bvy, and it follows that
{bs)‘}’g = {a Ew: au€cy and a € bvo}.

Corollary 4.3.2 We have the following alternative formulae of B- and ~v-duals of ji*

{bsx}ﬂ:{CLEw: au € ¢y and debsﬂ},
{ﬁA}ﬁ:{aEw: au € (o, and dEF)’B},

{ﬁ)‘}’y = {a cw: au € ly and a € /_ﬂ},
where 1 is any of the spaces csg, cs or bs, while 7 is either csy or cs.

Proof. It is immediate by Lemma 1.3.5 and the results of this chapter with (3) of

Remark 4.3.1. O

Remark 4.3.3 We have the following:

(1) For any a € {bs*}? and every y € {4, we have (a,u,A(y,)) € co and (a,y,) € co
(since au € ¢y and @ € ¢).

(2) For any a € {cs*}? and every y € ¢, we have (a,u,A(y,)) € ¢o and (a,y,) € ¢
(because of A(y) € cp, au € {y and a € bvy C c¢).
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(3) For any a € {csp}? and every y € ¢, we have (a,u,A(y,)) € co and (G,y,) € co

(as y € co, au € {y and @ € ¢).
Corollary 4.3.4 We have the following facts:
(1) Ifa € {bs*}?; then 352 japwy = 302 Ay )yx for every x € bs* withy = A(x).

(2) If a € {cs*}?; then Y oo apwy = —Lag + Y e A(ak41)yx for every x € cs* with

Y= A(w), where L = lim,,_,o Yy, and ag = lim,,_,o0 Q.
(3) Ifa € {cs)}?; then 302 japwr = 302 A1) yx for every x € csy withy = A(x).

Proof. For any z € ji*, let y = A(x) € p. Then, for every a € {i*}?, we have ax € cs
which means that (> _ arxx) € ¢ and so lim,, oo > o_ arxy exists. Thus, by going to
the limits in both sides of (4.2.2) as n — oo and using Remark 4.3.3, we deduce the

present result (the details are left to the reader). a
Corollary 4.3.5 We have the following facts:

(1) The inclusions {p*}* C {i}* are always satisfied. Further, if u € lw; then the
equalities {p*}* = {i}® are satisfied.

(2) If 1/ € ¢y and A(u) € bvy; then the inclusions {p*}’ C {a}? and {p*} C {a}”
are satisfied.

(3) If u € Lo and A(u) € bug; then the identities {i*}’ = {u}? and {i*}7 = {a}”

are satisfied.

Proof. For (1), it is obvious by Lemma 1.3.5 and Theorem 4.1.2 that {i*}* C ¢, =
{ii}*. Also, if u € £; then au € ¢, whenever a € ¢; which implies that {}* C {z*}°.

For (2), if 1/A € ¢, and A(u) € buy; then cs C cs* and bs C bs* (see Theorem
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3.3.1) which implies that {cs*}? C {es}? and {bs*}? C {bs}?. Also {csp}? = {cs*}? C
{es}? = {csp}? (see Lemma 1.3.5 and Remark 4.3.1). For (3), if u € £, and A(u) € bvy;

then the equalities cs* = cs and bs* = bs hold (see Theorem 3.3.1) which implies that

{es*}0 = {cs}? and {bs*}? = {bs}?. Also {cs)}? = {cs?}0 = {cs}? = {cso}?. O

Remark 4.3.6 Suppose v = e = (1,1,1,---) in (4.1.2); we get = A(y) and so
y=o(z). Thusz € i <=y € p. Also, from (4.2.1), we get a, = —ay, for all k. Besides,
relation (4.2.2) will be reduced to the form S"7_ apx = anyn — > p—g A(as1)yr, where
y = o(x). Therefore, by taking v = (1,1,1,---) in Theorems 4.1.2, 4.2.1 and 4.2.2
obtaining the #-duals of the spaces [i*; these results will be reduced to obtain the
f-duals of the spaces i as given by Lemma 1.3.5. That is, #-duals of i, as given in
Lemma 1.3.5, can be obtained from 6-duals of ji* in Theorems 4.1.2, 4.2.1 and 4.2.2,
by assuming that u, = 1 for all k. Similarly, Remark 4.3.3 and Corollary 4.3.4 will be
valid for S-duals of @ with u, =1, ay = —ay (kK > 1), a9 = —ap and y = o(x) instead

of y = A(z), where z € i and a € fi°.
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Chapter 5
MATRIX OPERATORS




5 MATRIX OPERATORS

In this last chapter, we characterized some matrix classes and their matrix operators
related to the A-sequence spaces ji* of bounded, convergent and null series. More pre-
cisely, we essentially deduced the necessary and sufficient conditions for an infinite
matrix A to act on, into and between the spaces ji*, where i stands for any of the
spaces ¢sg, ¢s or bs. This chapter is divided into three sections, the first is devoted to
characterize matrix operators on the spaces ji*, the second is for matrix operators into
the spaces i* and the last is for matrix operators between the spaces ji* with some
particular cases. The materials of this chapter are part of our research paper [49] which

has been published in the Global Sci. J. on 2022.

5.1 Matrix Operators on i’

In this section, we conclude the necessary and sufficient conditions for an infinite
matrix A to act on the A\-sequence spaces ji*.
Every infinite matrix A = [a,] will be associated with an infinite matrix A called

as the associated matrix of A, and we define this associated matrix A = [a,;] by

&k:—)\kH Qp, k 1——)\k
AN) T A)

ank—H Ank
ok — Qs = A Al k>
Ink ~ G = M (A(Akm A(Aw) (n k2 1)

which can be redefined in terms of our notation in (4.1.1) as follows:

Unk = Uk 10n kt1 — UkOnk — Qn 1 = (Ukp1 — 1)@n 1 — UkGnk (5.1.1)
for all n,k > 1, where u;, = A\/A(M) (K > 1). Also, for simplicity in notations, we
may define another associated matrix A = [@,;] via the entries of A by

Ak = Gn k+1 — Qnk (n,k>1). (5.1.2)
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Besides, for each n > 1, we have A, = (au)%2, An = (4a1)3, and A, = (@)5,
which are the n-th row sequences in the matrices A, A and A, respectively. That is
A, = (Ups 11 — Upng — Anpr1)se, and A, = (Gppr1 — Gup)S>, for every n > 1.
Further, we assume the sequences x,y € w are connected by the relation y = A(x) and
so (4.1.2) is satisfied. Then z € i* <= y € p. In fact, the sequences z and y are
uniquely determined in the spaces ji* and pu, respectively (since i* and p are linearly

isomorphic to each others by Theorem 2.2.5 and Remark 4.1.1). Also, by using (4.1.2)

with the same technique by which (4.2.2) has been derived, we obtain that

m m—2
Z AnkTr = anmumA(ym> - CAln,mflymfl + Z ankyk (na m Z 1)7 (513)
k=1 k=1

where yy = 0 and the sum on the right-hand side is zero when m = 1, 2. Moreover, let
p be any of the spaces csy or bs, and so p is the respective one of the spaces ¢y or /.
Then, if A, € {p*}? for every n > 1; then we find by Theorem 4.2.1 that A,, € bv; and
so A, € {; for every n > 1, which implies that series on right-hand side of (5.1.3) is
absolutely convergent when m — oo, where x € p* and y € p. Further, it follows, by (1)
and (3) of Remark 4.3.3, that lim,, 00 @nmUmA(Ym) = 0 and limy, o0 Gpm—1Ym—1 = 0
for every n > 1. Therefore, by passing to the limits in both sides of (5.1.3) when

m — oo and using (1) and (3) of Corollary 4.3.4, we deduce that

Zkzlankxk = Zkzlankyk = Z (Gng+1 — Que)ye (R 21) (5.1.4)

k=1
which means that A,(r) = A,(y) for all n, and hence A(z) = A(y) for every pair of
sequences € p* and y € p which are connected by y = A(x) Also, this means that
A(z) € X for every x € p* if and only if A(y) € X for every y € p, where X is any
sequence space. On other side, if A, € {cs*}? for every n > 1; we similarly find, by

Theorem 4.2.1, that A, € bv; and A, € ¢, for every n > 1. Thus, series on right-

hand side of (5.1.3) is also absolutely convergent when m — oo, where x € cs* and
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y € c. Further, it follows, by (2) of Remark 4.3.3, that lim,, 0 GnmUmA(ym) = 0 and
limy, o0 GnmYm = Lay, for every n > 1, where L = lim,,, o0 Y, and a,, = limy, o0 Gpm
for all n which implies that > ;" Gnx = Gy — Gn1 (n > 1). Therefore, by using (2) of
Corollary 4.3.4 and going to the limits in both sides of (5.1.3) as m — oo, we get

o0 oo [e.9]

Z ALl = Zankyk — Ldn = Z&nk(yk — L) — Ldnl (n Z 1) (515)

k=1 k=1 k=1

which means that A,(z) = A,(y) — La, for all n, and hence A(x) = A(y) — La for
every pair of sequences = € cs* and y € ¢ which are connected by y = A(:v) This also
means that A(x) € X for every o € ¢s* if and only if A(y) — La € X for every y € ¢,

where @ = (a,) and X is any sequence space. Thus, we have proved the following:

Lemma 5.1.1 For any infinite matriz A, let A and A be its associated matrices defined
by (5.1.1) and (5.1.2), respectively. Then, for each n > 1, the following conditions are

equivalent to each others:
(1) A, e [}
(2) uA, € <ﬁ’\> and A, € bu;.
(3) uA, € (") and A, € 1/,
where ©® = {4, <bs>‘> = ¢y and <cs>‘> = <csg‘> =/{.
Proof. It is immediate by Theorem 4.2.1 and Corollary 4.3.2. O

Lemma 5.1.2 Let p be any of the spaces csg or bs, and p the respective one of the
spaces ¢y or L. Then, for any sequence space X and every infinite matriz A, we have

the following facts:
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(1) If A, € {p*}? for every n > 1; then A(x) = A(y) for every pair of sequences
z € p* and y € p which are connected by the relation y = A(x). Also A(z) € X

for all x € p* if and only if A(y) € X for all y € p.

(2) If A, € {cs*}? for every n > 1; then A,(x) = Ap(2) — L(Gn1) (n > 1) for every
pair of sequences x € cs* and z € cy which are connected by z = A(m) — Le,
where e = (1,1,1,---), L = limy_,o0 Ap(2) and (an1) is the 1st column sequence

in A. Also, we have A(z) € X for all x € ¢s* if and only if (any)2, € X for

every k > 1 and A(z) € X for all z € c.

Proof. we have already proved part (1) and for part (2) let A, € {cs*}? for every
n > 1. Then, we obtain by (5.1.5) that A,(z) = A,(2) — L(an1) (n > 1) for every
pair of sequences x € cs* and z € ¢y which are connected by z = A(m) — Le, where
e=(1,1,1,---) and L = limj_,c Ap(z). Also, assume that A(z) € X for all z € cs,

and for each k > 1, define a sequence e*) = (e,(f))gozl by

e =Q ~(up—1);  (n=k+1),
0; (otherwise).

Then, it can easily be seen that A(e®)) = ¢, € cs for every k > 1, where e, = (6,1)%%,
for all k. Thus e® € cs* such that A(e®) = (—a,:)22, for all k& which implies that
(Gnk)se, € X for every k > 1 (by assumption). Also, for any y € ¢y, let © = (zy)
be given by (4.1.2). Then z € cs) such that y = A(z) and so A(y) € X by part
(1). Thus A(y) € X for all y € ¢p. Conversely, suppose that (G,;)22, € X for every
k> 1and A(z) € X for all 2z € ¢y. Then (a,;) € X and for every = € cs* we have

2 € ¢y, where z = A(z) — Le and L = limy_,oo Ap(z). Thus A(z) € X and hence

A(z) = A(2) — L(Gn1) € X. That is A(z) € X for all z € cs*, and we have done. O
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Now, we have the following main results characterizing matrix operators acting

from csy or bs* into an arbitrary sequence space X and from cs” into X.

Theorem 5.1.3 Let p be any of the spaces csqg or bs, and p the respective one of the
spaces cg or Ls. Then, for any sequence space X and every infinite matriz A, the

following statements are equivalent to each others:
(1) Ae(X).
(2) A, €{p*}? for everyn >1 and A(y) € X for all y € p.
(3) uA, € (p*) for everyn >1 and A € (p, X),

where (bs*) = ¢y and (cs}) = loo.

Proof. Suppose that (1) is satisfied, that is A € (p*, X). Then A, € {p*}? for every
n >1and A(z) € X for all x € p* by Lemma 1.3.6. Thus, for every y € p, let = (x3,)
be given by (4.1.2). Then x € p* such that y = A(z) and so A(y) € X (as A(z) = A(y)
by (1) of Lemma 5.1.2) and since y € p was arbitrary; we find that A(y) € X for all
y € p. Hence, we have A, € {p*}? for every n > 1 and A(y) € X for all y € p which
is (2), that is (1) = (2). Further, assume that (2) is satisfied, that is A, € {p*}* for
every n > 1 and A(y) € X for all y € p. This, together with Lemma 5.1.1, implies
that ud, € (p*) and A, € p” for every n > 1, as well as A(y) € X for all y € p.
Hence, we deduce that uA, € (p*) for every n > 1 and A € (p, X) which is (3), that
is (2) = (3). Finally, suppose that (3) is satisfied, that is uA, € (p*) for every n > 1
and A € (p, X). This implies that uA, € (p*) and A, € p? for every n > 1 as well as
A(y) € X for all y € p. Hence, it follows by Lemma 5.1.1 that A4, € {p*}? for every
n > 1. Besides, for every z € p*, let y = A(x). Then y € p and A(z) = A(y) by (5.1.4)
which implies that A(z) € X for all € p*. Therefore, we have A, € {p*}” for every
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n > 1and A(z) € X for all z € p*. This means that A € (p*, X) which is (1), that is

(3) = (1) and this completes the proof. O

Theorem 5.1.4 For any sequence space X and every infinite matriz A, the following

statements are equivalent to each others:
(1) A€ (es) X).

2) A, € {cs*}? for everyn > 1, A(z) € X for all z € cy and (an;), € X for every
n=1

kE>1.
(3) uA, € ly for everyn > 1, A€ (cy, X) and (a,4)°, € X for every k > 1.
(4) A€ (esy,X) and (an), € X for every k > 1.

Proof. The proof of this result is based on (2) of Lemma 5.1.2 with help of (5.1.5) and
Lemma 5.1.4. Also, its proof is exactly same as that of Theorem 5.1.3, above. Thus,

we may omit the details of proof. O

Now, with help of (4.1.1) and (5.1.1), let’s consider the following conditions:

(ukank)zo:l € ¢ for every n > 1 (5.1.6)
(ukank)zozl € Uy for every n > 1 (5.1.7)
ZZ; |Gy k41 — Gnk| converges for every n > 1 (5.1.8)
sup Z:; | i1 — | < 00 (5.1.9)
Slip )kh_g)lo Api| < 00 (5.1.10)
T}Lr{}o(dnyk+l — Qpy) = ay, exists for every k > 1 (5.1.11)
Tim Z;'dnvkﬂ — G, — | = 0 (5.1.12)
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lim @, exists for every k > 1 (5.1.13)

n—oo

lim Zkﬂ'd’%kﬂ — G| = 0 (5.1.14)
lim (Gp 41 — Gng) = 0 for every k > 1 (5.1.15)
n—oo

lim a,, = 0 for every k > 1 (5.1.16)
n—oo

Zooil |ani|” converges for every k> 1 (p > 1) (5.1.17)

> p

sup Z ‘ Z(dn/7k+1 — Qpi)| < oo for p>1, (5.1.18)
Kek 21 kek

where K stands for the collection of all non-empty finite subsets of positive integers.

Then, by using Lemma 5.1.1, we find that
A, € {bs*}’ for every n > 1 <= (5.1.6) and (5.1.8) are satisfied,

A, € {7*}” for every n > 1 <= (5.1.7) and (5.1.8) are satisfied,

where 7 stands for any of the spaces cs or csg. Therefore, by using Theorems 5.1.3
and 5.1.4 with help of Lemmas 1.3.8, 1.3.9, 1.3.10 and 1.3.11 which characterize the
matrix operators on the spaces /., ¢ and ¢q into the classical sequence spaces, we can
immediately deduce the following consequences characterizing matrix operators on the

spaces ji:

Corollary 5.1.5 For an infinite matriz A, we have the following:

(1) A € (bs*, L) if and only if (5.1.6) and (5.1.9) are satisfied.

(2) A € (csp,loo) if and only if (5.1.7) and (5.1.9) are satisfied.

(3) A € (s, lo) if and only if (5.1.7), (5.1.9) and (5.1.10) are satisfied.

Proof. It follows from Theorems 5.1.3 and 5.1.4, since A € (i, (o) <= (5.1.9) held
(note that (5.1.9) implies that (372 ,an;)5%; € loo. Thus (5.1.10) <= (@nk)5Z; € loo

for every k > 1, since Z;’;kam = Gy, — Gy for all n and k). O
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Corollary 5.1.6 For an infinite matriz A, we have the following:

(1) A € (bs,c) if and only if (5.1.6), (5.1.9), (5.1.11) and (5.1.12) are satisfied.
Further, if A € (bs*, c); then limy, oo An(z) = Y oo, Gryr for every x € bs*, where

y = f\(:c) and @ = limy, o0 (Gp g1 — nk) for all k.

(2) A € (es),c) if and only if (5.1.7), (5.1.9) and (5.1.11) are satisfied. Moreover, if
A € (es),¢); then lim, o An(x) = S20° aryy for every x € cs), where y = A(z) and

A = limy, o0 (Gn g1 — Gnk) for all k.

(3) A € (cs*,¢) if and only if (5.1.7), (5.1.9) and (5.1.13) are satisfied. Further, if
A € (cs*,¢); then limy, oo An(x) = Y00 Gryr — L(Go + > py @x) for every x € cs?,
where y = A(:E), L = limg 00 Yk, Qo = limy, 500 Gp1 and ay, = limy, o0 (Gn g1 — Gng) for

all k.

Proof. It is immediate by noting that: (1) A € ({,c) < (5.1.9), (5.1.11) and

(5.1.12) are satisfied. (2) A € (cg,c) <= (5.1.9) and (5.1.11) are satisfied. O

Corollary 5.1.7 For an infinite matriz A, we have the following:
(1) A € (bs*, co) if and only if (5.1.6) and (5.1.14) are satisfied.
(2) A € (csy,co) if and only if (5.1.7), (5.1.9) and (5.1.15) are satisfied.

(3) A € (cs*, o) if and only if (5.1.7), (5.1.9) and (5.1.16) are satisfied.

Proof. It is obtained by observing that: (1) A € ({s,cy) < (5.1.14) is satisfied.

(2) A€ (cy,co) <= (5.1.9) and (5.1.15) held. O

Corollary 5.1.8 Let A be an infinite matrixz. Then, for every real p > 1, we have:

(1) A € (bs*,£,) if and only if (5.1.6), (5.1.8) and (5.1.18) are satisfied.
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(2) A € (csy,0p) if and only if (5.1.7), (5.1.8) and (5.1.18) are satisfied.
(3) A € (cs*,0,) if and only if (5.1.7), (5.1.8), (5.1.17) and (5.1.18) are satisfied.
Proof. It is immediate by means of the fact: A € (i, ,) <= (5.1.18) holds. O

It is worth mentioning that (5.1.6) implies limg_,o G, = 0 for all n (see Remark
4.3.1) and so implies all of (5.1.7) and (5.1.10). Further, in light of Remark 4.3.6,
it must be noted that Corollaries 5.1.5, 5.1.6, 5.1.7 and 5.1.8 can be reduced, with
assumption u = e (i.e. ux = 1 for all £ > 1), to characterize matrix operators on the

sequence spaces i = bs, cs and csq as follows:

Remark 5.1.9 The necessary and sufficient conditions for an infinite matrix A in order
to belong to any of the classes (i, (), (&, ¢), (&, co) or (fi, £,) are those conditions given
respectively in Corollaries 5.1.5, 5.1.6, 5.1.7 or 5.1.8 by removing condition (5.1.7) and
taking up = 1 and G, = —ay, for all n, k > 1, where p > 1. For example, let up = 1

in (3) of Corollaries 5.1.5, 5.1.6 and 5.1.7, we respectively obtain that

A € (cs,l) <= sup

n

o
lim a,,| < oo and sup g |Gk — Q1| < 00,
k—o0 n k=1
m . .
A € (cs,c) <= sup E i 1|an;.C — Qp 41| < oo and lim a,y exists for every k > 1,
n = n—oo

o0
A€ (es,cp) < supz |@nk — an 1| < oo and lim an = 0 for every k > 1
n k=1 ’ n—00

which coincide with the familiar results in [58] (see also Lemma 1.3.14).

5.2 Matrix Operators into g’

In this section, we conclude the necessary and sufficient conditions for an infinite
matrix A to act from any sequence space into the A\-sequence spaces ji*.
For this, we will apply the useful result in part (3) of Lemma 1.3.7 to our new

spaces fi*. This leads us to the following theorem:
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Theorem 5.2.1 Let X be a sequence space, A an infinite matrixz and define the matrix
B = [bn] by
n n 1
bk = ZFI (Zi_jx) AN)ap  (nk>1).
A€ (X, 1Y) if and only if B € (X, ), where [i stands for any of the spaces csg, cs or

bs, and p stands for the respective one of the spaces cy, ¢ or L.

Proof. This result is immediate by (3) of Lemma 1.3.7, where B = A A. O

In particular, if X, in above theorem, is any of the classical sequence spaces; then

we obtain the following corollary:

Corollary 5.2.2 Let A be an infinite matriz and define the matriz B = [bui] by

b, = Z; (Z"Ml) AN ag (k> 1).

Then A belongs to any one of the classes (co, i), (¢, i), (boo, @) or (€p, 1) if and

only if B belongs to the respective one of the classes (co, ), (¢, 1), (Coo, t) or (€y, f1),

where p > 1 and p stands for any of the spaces cg, ¢ or ly.

More precisely, by using Lemmas 1.3.9, 1.3.10, 1.3.11 and 1.3.12 characterizing
matrix classes (co, i), (¢, 1), (loo,pt) or (€p, ), where 1 < p < oo, we conclude the

conditions:

sup Zk:1|bnk| < 0 (5.2.1)
lim b, = by exists for every k > 1 (5.2.2)
n—oo

lim Zk:l‘b“k — b =0 (5.2.3)
nh_r)rolo Zkzlb”k exists (5.2.4)
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nlggo Zk:1|bnk| =0

lim b, = 0 for every k > 1

n—oo
. o0
lim E b =0
n—00 k=1

sup |b| < 0o
n, k

sup Y buil? <00 (g=p/(p—1)).

(5.2.5)
(5.2.6)
(5.2.7)
(5.2.8)

(5.2.9)

Now, with help of Lemmas 1.3.9, 1.3.10, 1.3.11 and 1.3.12, we immediately deduce

the following corollaries in which B = [b,,;] is as given in Corollary 5.2.2.

Corollary 5.2.3 We have (cy,bs*) = (¢, bs*) = ({s,bs"), and A € (1, bs*) if and only

if (5.2.1) holds.

Corollary 5.2.4 We have the following:

(1) A€ (l,cs?) if and only if (5.2.1), (5.2.2) and (5.2.3) hold.

(2) A€ (e, cs?) if and only if (5.2.1), (5.2.2) and (5.2.4) hold.

(3) A€ (co,cs?) if and only if (5.2.1) and (5.2.2) hold.
Corollary 5.2.5 We have the following:

(1) A€ (b, csp) if and only if (5.2.5) holds.

(2) A€ (c,csp) if and only if (5.2.1), (5.2.6) and (5.2.7) hold.

(3) A€ (co,csp) if and only if (5.2.1) and (5.2.6) hold.
Corollary 5.2.6 We have the following:

(1) A€ (¢1,bs") if and only if (5.2.8) holds.

(2) A€ (l1,cs) if and only if (5.2.2) and (5.2.8) hold.

(3) A€ (1,cs)) if and only if (5.2.6) and (5.2.8) hold.
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Corollary 5.2.7 Let 1 < p < oo and ¢ =p/(p—1). Then, we have the following:
(1) A€ (£,,bs) if and only if (5.2.9) holds.
(2) A€ (Ly,cs) if and only if (5.2.2) and (5.2.9) hold.

(3) A€ (€y,csy) if and only if (5.2.6) and (5.2.9) hold.

5.3 Particular Cases

In this final section, we apply our results to some particular cases. Also, we
conclude the necessary and sufficient conditions for an infinite matrix A to act between
our new spaces.

For this, we will apply (3) of Lemma 1.3.7 to our results in previous section in
order to characterize the matrix operators acting from pi* into the matrix domains of
triangles. For instance, we have csy = (¢o)s, €5 = (€)g, b5 = (bo)os Co(A) = (co)a,
c(A) = (c)a, lo(A) = (loo)a and bv, = ({,)a for p > 1. Therefore, we conclude the
following consequences:

~

Corollary 5.3.1 Let A be an infinite matriz and define the matrices [byx] and [byy] by
bk = ani — Ap—1,k and (;nk = Uk+1bn,k+1 — Upbpi — bn,k+1 (n, k> 1)-

Then, the necessary and sufficient conditions in order that A belongs to any one of
the classes (i, ls(A)), (1Y, c(A)), (7%, co(A)) or (i*,bvy) are those conditions given
respectively in Corollaries 5.1.5, 5.1.6, 5.1.7 or 5.1.8 provided that the entries a,; and

Qi are respectively replaced by by and Do for all n,k > 1, where p > 1.

~

Corollary 5.3.2 Let A be an infinite matriz and define the matrices [byx] and [byy] by

n A~
bk = ijlajk and  bpp = Up410n k1 — Ukbng — b it (n,k>1).
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Then, the necessary and sufficient conditions in order that A belongs to any one of the
classes (i*, bs), (i, cs) or (i, cso) are those conditions given respectively in Corollaries
5.1.5, 5.1.6 or 5.1.7 provided that the entries a,, and Gy are respectively replaced by

b, and l;nk foralln, k> 1.

Finally, we end our work with the following corollaries characterizing matrix operators
between our spaces of A-type. For this, let ' = (\}) be a strictly increasing sequence of
positive reals (A and ) need not be equal). Then i = (1), where A’ is the triangle

defined by (2.2.4) with X" instead of A\. Then, we deduce the following:

~

Corollary 5.3.3 Let A be an infinite matriz and define the matrices [byx] and [byx] by

n n 1

~

bk = Up1bn k1 — by — by 11 (n,k>1).

Then, the necessary and sufficient conditions in order that A belongs to any one of
the classes (it bs™), (i, cs™) or (i*,cs) ) are those conditions given respectively in
Corollaries 5.1.5, 5.1.6 or 5.1.7 provided that a,. and a,; are respectively replaced by

bnr and l;nk for all n,k > 1.

~

Corollary 5.3.4 Let A be an infinite matriz and define the matrices [byx] and [byy] by

1 n

" jzlﬁ()\;) ajr and Dok = Uk p1bpssr — Ukbp — bngrr (0, k> 1),

bnk =

Then, the necessary and sufficient conditions in order that A belongs to any one of the
classes (i, 03), (*, ), (", &) or (5*, £3') are those conditions given respectively in

Corollaries 5.1.5, 5.1.6, 5.1.7 or 5.1.8 provided that a,; and a,; are respectively replaced

by b and l;nk foralln,k > 1, where 1 < p < 0.
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CONCLUSION




CONCLUSION

The new A-sequence spaces of bounded, convergent and null series have been intro-
duced, their isomorphic, algebraic and topological properties have been studied, their
inclusion relations have been established, their Schauder bases and Kothe-Toeplitz dual
spaces have been constructed and their matrix operators have been characterized. This
gives an open scope and a new area for additional future research studies. For instance,
the study of compact operators and some fixed point theorems on our new spaces (see
[8, 44, 45] for such studies) and study some spectral theorems (see [8, 47] for such
studies) with some applications in differential equations and numerical analysis (see
[8, 13] for similar studies).

At the end of this thesis, I suggest the researchers to continue in study of our new
sequence spaces and their matrix transformations to solve many open problems still

left and in need to study.
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LIST OF SYMBOLS

the scalar field R or C
positive integers
sequences

k-term of x

difference sequence of x
sum sequence of x

the space of all sequences
sequence spaces

norm

Kothe-Toeplitz duals of X
a-dual of X

[-dual of X

~v-dual of X

matrices

entries of A

A-transform of x

band matrix of difference
sum matrix

matrix class

matrix domain of A in X
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CS

CSo

A-sequence

A-matrix

A-matrix

A-sequence space

space of bounded sequences

space of convergent sequences

space of null sequences

space of sequences associated with p-absolutely convergent series
space of sequences with p-bounded variation
space of bounded difference sequences

space of convergent difference sequences

space of null difference sequences

space of sequences associated with bounded series
space of sequences associated with convergent series
space of sequences associated with null series
A-sequence space of bounded series

A-sequence space of convergent series

A-sequence space of null series

the space cg, ¢ or

the space csq, cs or bs

the space csp, cs* or bs*

the space ¢ or £

the space csq or bs

the space csj or bs*
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