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Abstract.

The notion of matrix domains of triangles in sequence spaces has largely been used to define new
sequence spaces in terms of old ones. In this research paper, we will use this idea to introduce some
new sequence spaces related to bounded and convergent series. Also, some properties of our spaces
will derived. Further, we will establish some new inclusion relations between them. Moreover, the
Schauder basis of these spaces will be discussed.
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1 Introduction

In this paper, we use w for the linear space of
all real or complex sequences, and any
sequence x € w will be simply written as x =
(xx) instead of ¥ = (Zk)i_1. Also, we will
use the conventions e = (1,1,1..) and
ex = (Onk)n_i for each k = 1, that is exis the
sequence whose only one non-zero term
which is the k-term and is equal to 1, Also,
any term with non-positive subscript is equal

bs = {x € w : sup, | > ;_, x|

And CSo = {x € w :

Thus x belongs to bs, cs or cso whenever the
series 2-k—1 %k is bounded, convergent or
convergent to zero, respectively. Further, for
each 1 < p < oo, the space [,=
{xew: Ypq|x,|P < oo} contains all
sequences associted with  p-absolutely
convergent  series and bv = {x €
w: Y, |xgp —xp_1l < oo} is the space of
sequences with bounded variation [8]. By a
BK-space we mean a Banach sequence space
with continuous coordinates. The spaces € ,c
and co are BK-spaces oo with their natural

o0
A, (x) = Z (nk Tk
k=1 ,
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to zero, i.e. xo =0 and x-1 = 0. Any linear
subspace of w is called a sequence space. We
will write foo ,c and co for the classical
sequence spaces of bounded, convergent and
null sequences, respectively. Also, we will
write bs, cs and cso for the sequence spaces
consisting of sequences associated with
bounded, convergent and null series,
respectively. That is

< oo}, cs ={r € w : lim, ,oo( >, _, k) exists}

lim, ,oo( D> 5 ;@) =0}

norm || - oo defined by llxll= supk |xk|, where
the supremum is taking over all integers k >
1, and ¢, is a BK-space with the p-norm given
byllx|l, = supn|Xr=1 xx|p. Also, the spaces
bs, cs and cso are BK-spaces with their norm
kll-lls defined by [|x[l, = XzZ1lx|P[16]. An
infinite matrix A whose real or complex
entries anx for all nk = 1 WiLICbe written as A
= [ant] instead of A= [("‘”ff]n.kzl, and the act
of A on any sequence x € w is called the A-
transform of x, and is defined to be the
sequence A(r) = (An ()21, where

(nz1)
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provided that series on the right hand side converges for each n, and we then say that
A (x) exists. For two sequence spaces X and Y, we say that an infinite matrix A de-
fines a matrix operator form X to Y, which is a linear operator, and we denote it by
A: X — Y, if Aacts form X to Y, i.e, if for every sequence = € X; the A-transform
of = exists and is in Y. Moreover, we will write (X :Y) for the class of all infinite
matrices that map X into Y, i.e, A € (X :Y) if and only if A (z) exists and A (z) € YV
for every x € X [8]. Further, the matrix domain of A in a sequence space X is denoted
by X4 which is a sequence space defined as X4 = {x € w: A(x) € X}. An infinite
matrix A is called a triangle, if a,, = 0 for all £ > n and a,, # 0 for all n, where
n,k > 1. The matrix domain of a triangle in a sequence space has a special important.
For example, if X is a BK-space with its norm || || and A is a triangle, then the matrix
domain X 4 is also a BK-space with the norm || - |4 defined by ||z||a =||A(z)|| for all
x € X4 [16]. We will write o for the sum-matrix which is a triangle defining the partial
summation, that is o(z) = (D°,_, x)5>; which means that o, (z) = > ;_, z for all n.
Then, it can be seen that bs = ({«),, cs = (c), and csy = (¢y),. Also, by A we mean
the band matrix of difference, i.e, A(x) = (v, — Tp1)re, = (21,29 — 21,23 — g, - - )
which means that A(xy) = xp — x5 for all k and so the space bv can be defined as
bv = (£1)a. The idea of constructing a new sequence space by means of the matrix
domain of a particular triangle has largely been used by several authors in different
ways. For instance, see [1, 2, 3,4, 5,6, 7,9, 11, 13, 14, 17, 18, 19] and [20].

2 The new A-sequence spaces bs*, cs* and c.sf)‘

In this section, we introduce the new A-sequence spaces bs*, cs* and csy, and show
that these spaces are BK-spaces which are isometrically isomorphic to the spaces £,
c and ¢y, respectively.

Here and in what follows, we assume throughout that A = ()\j);.il is a strictly increasing
sequence of positive reals tending to co. That is 0 < A\ < Ay <--- and A\; — o0 as
j — oo. Also, we define the triangle A = [\;] for every n,k > 1 by

s % (1<k<n),
0; (k>n>1)
Then, for any x € w, we have the sequence A(z) = (A, (z)),~,, where
1k
Ag(z) = " ;(Aj — Az (R=1). (2.1)

The A-sequence spaces ¢}, ¢, £2 and 7 have been introduced by Mursaleen and Noman
[10, 12] as the matrix domains of A in the spaces ¢y, ¢, {o and ¢;, respectively. That
sy ={rew: AMz)€c},P={recw: AMz)ech l ={recw: Ax)el}
and (2 = {x e w: A(z) € 1}
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As a natural continuation, we follow them to introduce the new spaces bs*, cs* and

cs) as the matrix domains of A in the spaces bs, cs and csg, respectively. That is

bs* = (bs)py = {z € w : A(z) € bs}, es* = (cs)p = {x € w : A(x) € es} and

csy = (cso)a = {x € w : A(x) € csp}. So that, our contribution is the following new

spaces:
{x cw : sup < oo} ,
cs™ = {:B cw: lim (Z Ak(:v)> exists},
csy = {x cw : lim (Z Ak(a:)) = O} :
n—oo
k=1

Besides, we define the triangle A = [\,;] for every n,k > 1 by

bs*

Ag()
k=1

)\nk —

"1

A (Ak—Ak_l)ZA—j; (1<k<n),
i=k

0; (k>n>1).

Then, for every x € w, we have

n

An(z) =) ( > Ai ) Ak — Nee1) T (n>1). (2.2)

k=1 j=k 7

Thus, it can easily be seen that A(x) = o( A(x) ) for every # € w which can be written
as follows:

An(z) = Mp(2), (n>1). (2.3)

It follows that our bs*, cs* and cs) are sequence spaces which can be redefined as the
matrix domains of A in the spaces /., ¢ and ¢, respectively. That is

bs* = (lo)i, s =(c); and esy = (co); (2.4)
Thus, we have bs* = {z € w: A(z) € (oo}, es* = {z € w: A(z) € ¢} and ¢s) = {z €

w : A(z) € ¢}, and we may begin now with the following result which is essential in
the text:

Lemma 2.1 The \-sequence spaces bs*, cs* and csy are BK -spaces with the norm
| - | defined, for every sequence x in these spaces, by

el = IA(@)ll = sup [, (2)| = sup

> A(x)
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Proof. Since A is a triangle; this result is immediate by (2.4) and the fact that (o, ¢
and ¢o are BK-spaces with their natural norm || - || (Maddox [8, pp.217-218]). To
see that, the famous result of Wilansky [16, Theorem 4.3.12, p.63] tells us that bs*, cs*
and cs) are BK-spaces with the given norm and this completes the proof. O

Theorem 2.2 The \-sequence spaces bs*, cs* and csy are isometrically lz’near-z’somorphz’c
to the spaces l, ¢ and cy, respectively. That is bs* =l , cs* 2 ¢, and csy = cp.

Proof. To prove this result, we will show that there exists a linear bijection between
the spaces bs* and £, which preserves the norm. For this, we can use the definition of
the space bs* to define a linear operator by means of the matrix operator A : bs* —
by & + A(z). Then, it is obvious that A(z) = 0 implies # = 0, and so A is injective.
Also, let y € £ be given and define a sequence x = (z;) in terms of the sequence y by

e — A AQy;) = Aj-1 Alyi1).
J )\j — )\];1 '

(=1,

where yo = 0. Then, it follows by (2.1) that

M) = 3 30 ) — Ao Al = A, (k2 D).

Jj=1

Thus, by using (2.3), we find that A, (z) = 3.7 A(yx) = yn for all n, which means
that A(z) = y, but y € fo and so A(z) € f,. Thus, we deduce that = € bs* such
that A(z) = y and hence A is surjective. Further it is clear by Lemma 2.1 that A is
norm preserving, since ||[A(z)||o = |lz|[x for every z € bs*. Therefore, the mapping
A bs* = (4 is a linear bijection preserving the norm. That is, our A is an isometry
isomorphism between bs* and ¢, which means that bs* = /.. Similarly, it can be
shown that cs* = ¢, and csy & ¢. O

Corollary 2.3 The \-sequence spaces bs*, cs* and cs) are isometrically linear-isomorphic

to the spaces bs, cs and csg, respectively. That is bs* 2 bs, cs* 2 cs, and csy = ¢s.

Proof. It is immediate by Theorem 2.2 and the facts that bs = (., ¢cs = ¢, and
cSp = . a

Remark 2.4 We have already shown in the proof of Theorem 2.2 that the matrix A
defines a linear operator from any of the spaces bs*, cs or csy into the respective one
of the spaces (., ¢ or cg, is an isometry isomorphism, and this implies the continuity
of the matrix operator A which will be used in the sequel.

At the end of this section, we give an example to show that our new spaces bs*, cs*

and cs) are totally different from the spaces £, ¢, cg, bs, cs and csg. For simplicity in
notations, we will use the symbole u to denote any of the spaces bs, cs or ¢sy and so
p is the respective one of the spaces bs*, cs* or ¢sy, and p* denotes the related space

among the spaces l,, ¢ or cg.
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Example 2.5 In this example, our aim is to show that our spaces u* are different
from all the sequence spaces p and p*. For this, consider the sequence A = (\;) defined
by A = k and so A(\;) = 1 for all £ > 1. Then, for any z € w, we have Ag(z) =
(1/k) Z§:1 z; = op(x)/k and A, () = S2r_, A(x) for all k,n > 1. Thus, our spaces
can be defined as p* = {z € w: (op(z)/k) € p} ={z e w: (X, ok(x)/k) € p*}.
Also, define the unbounded sequence z = (z;) by z; = 1 and for & > 1 by

k/2/(k+1)+ (k—1)y/2/(k—1); (kis odd),
—(2k —1)\/2/k; (k is even).

2l —

Then, we have z ¢ (., and so z ¢ p* which also implies that z ¢ bs and hence z ¢
which can independently be obtained from oy(z) = k+/2/(k + 1) when k is odd and

ox(2) = —k+/2/k when k is even. Further, we have Ay(z) = 1/2/(k + 1) when k is
odd and Agz(z) = —/2/k when k is even. Thus, we get A,(z) = +/2/(n+ 1) when
n is odd and A,(z) = 0 when n is even. This implies that A(z) € ¢, and so z € cs)
which leads us to z € p*. Hence, we have shown that z € p* while z ¢ u as well
as z € p*. Therefore, we deduce that u* ¢ p and p* ¢ p*. On other side, consider
the sequence 2’ = (z;) defined by 2, = A(1/log(1+k)) for all k£ > 1 with noting
that 2] = 1/log2. Then, we get o(2') = (1/log(1 + k)) € ¢o and so 2’ € ¢sy which
implies both 2z’ € p and 2’ € p*. Besides, we find that A(z") = (1/(klog(1 + k))) and
s0 M, (2') = 327, 1/(klog(1 + k)) which diverges to oo as n — oo and this means that
2" ¢ bs* and so 2/ ¢ p. Hence, we have shown that 2’ ¢ p* while 2/ € p and 2/ € p*.
Therefore, we deduce that pu ¢ p* as well as u* ¢ p*. Consequently, we conclude that
the spaces p* are totally different from all the spaces p and pu*.

3 Some inclusion relations

In the present section, we establish some new inclusion relations concerning the A-
sequence spaces bs*, cs* and cs). We essentially characterize the case in which the

inclusions bs C bs*, cs C ¢s* and csg C cs) hold, and discuss their equalities.
Lemma 3.1 We have the following facts:

1) The inclusions csy C cs® C bs* strictly hold.

2) The inclusions €} C cs* C ¢} and €3 C bs* C €2, strictly hold.

(1)
(2)
(3) The inclusion csy C cq strictly holds.
(4) If 1/X € Ly ; then the inclusion (1 C cs* strictly holds, where 1/X = (1/X;)52,.
(5)

The space {1 cannot be included in csy).

b}

Proof. (1) the inclusions cs) C cs* C bs* are obviously satisfied (by the well-known
inclusions ¢sg C ¢s C bs). Also, to show that these inclusions are strict, define the
sequence T = (z;) by z; = (279 \; — 2707V X, 1)/(\; — \j_y) for all j > 1. Then, by
using (2.1), we find that Ag(z) = 27% for every k > 1 and so A(z) = (1—27") € ¢\ .
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This means that € cs* \ ¢sy and so the inclusion csy C cs* is strict. Also, define
the sequence y = (y;) by y; = (=1)7(A\; + A\j—1)/(A\; — A\j—1) for all j > 1 . Then, for
every k > 1, we find that Ag(y) = (1/\¢) Zle(—l)j(kj + Aj—1) = (—1)* and hence
An(y) = =1 when n is odd or A,(y) = 0 when n is even. Thus, we deduce that
A(y) € £y \ ¢ which means that y € bs* \ ¢s* and hence the inclusion ¢s* C bs* is also
strict, and part (1) has been proved. To prove part (2), let z € ¢;. Then, the series
> ore Ak(x) is absolutely convergent and so it converges which means that z € cs*
and hence the inclusion ¢} C ¢s* holds which implies the inclusion ¢} C bs*. Also, if
x € cs*; then it follows, from the convergence of the series > o, Ax(z), that A(z) € ¢
and hence z € ¢} which means that the inclusion c¢s* C ¢ holds. Similarly, we can
show that bs* C ¢2 holds. To show that these inclusions are strict, define the sequence
v = (23) by 25 = (~1P[(A3/G + 1)+ y1/) /(O — Aj1) for every j > 1 Then, it
can easily be seen that A(x) = ((=1)*/(k+ 1)) € ¢s\ {1 and so x € ¢s* \ {7 which
means that the inclusion £} C es? is strict, and so is the inclusion ¢} C bs*. Further,
define the sequence y = (y;) by y; = [A(N;/(F+1))]/(A; —Aj—1) for every j > 1. Then,
it is easy to show that A(y) = (1/(k+1)) € ¢\ cs which means that y € ¢} \ cs* and
so the inclusion cs* C ¢ is strict. Finally, it is clear that A(e) = e € fo, \ bs which
implies that e € 2 \ bs* and hence the inclusion bs* C £ is also strict which ends
the proof of part(2). Moerover, part (3) is clear by combining the results of parts (1)
and (2). For part (4), suppose 1/\ € ¢;. Then, the inclusion ¢; C ¢7 holds (see [12,
Theorem 4.12] which tells us that: ¢; C £} <= 1/ € {;). Thus, the inclusion ¢; C cs*
is strict by (2). Finally, to prove (5), consider the sequence e; = (1,0,0,---). Then, it
is clear by (2.1) that Ay(e1) = M\ /g for all k> 1 and so A,(ey) = Ay o (1/X) > 1 for
all n (as A, > 0 for all k). Thus A(e;) ¢ ¢y which means that e; ¢ cs) while e; € ¢4
and hence ¢; ¢ csy. This completes the proof. O

Remark 3.2 Asin part (4) of Lemma 3.1, we will use the convention 1/A = (1/);)32;.
Also, since A is a sequence of positive reals; we deduce that 1/\ ¢ csg, but the sequence
of its partial sums o(1/)) is increasing whose positive terms and this leads us to the
following equivalences: 1/A € {1 <= 1/\ € ¢s <= 1/\ € bs.

Now, in what follows and for simplicity in notations, we will use some conventions to
prove our main results concerning the inclusions bs C bs*, cs C c¢s* and csg C cs)). For
this purpose, we are in need to quoting some additional lemmas and terminologies.

For any positive integer n, we define the following two positive real terms:
SZ:)\kii and tz = (/\k_)\k—l)iia (1 <k <n). (31)
=k Aj =k Aj -

Further, if 1/\ € ¢;; then the limits s} — s; and ¢} — t; (as n — 00) exist for each
k > 1. Thus, we can define the following three positive real sequences s = (si), t = (tx)
and u = (uy,) as follows:

.1 >~ 1 Ak
Sp = A — ., tr=A(\ — and up=-—"—, kE>1). (3.2
K k;)\j B =A( k)jZ;)\j s v v ( ). (32)
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Moreover, it can easily be deriving the following equalities:
sp=trur (k>1) and sp=trur (1 <k<n), (3.3)
tr=1+A(sg) (k>1) and  tp=14+A(sp) (1<k<n), (3.4)
where the difference is taken over k, that is A(s}) = s} — sp_; for every k < n.

Lemma 3.3 Let 1/\ € ¢4 and suppose that A(u) € c. Then, there must ezist a positive
integer ko satisfying all the following:

(1) 1 <ux <k forallk >ky and so 0 < limg_,oo Auy) < 1.

(2) There is a positive real 6 < 1/2 such that —6 < A(ug) < 1—43 for all k > ky.
(3) The difference sequence ( A(Ax) )oey, 1 strictly increasing to oc.

(4) If limy oo A(ug) = a; then limg oo t, = 1/(1—a) and limy_,o A(sg) = a/(1—a).

Proof. Suppose that 1/A € ¢; and A(u) € ¢ which means that limy_, A(ug) exists.
Then limy,_, o ug/k exists (due to the equality between these two limits). Thus (ug/k) €
¢ C ly. Also, we claim that there is a positive integer k; such that ug/k < 1 for all
kE > ky or upy/(k+ 1) < 1 for all k& > k; which can equivalently be written as
Mer1/(Age1 — M) < B+ 1 for all & > k;. Otherwise, suppose on contrary that the
sequence A = (\;) has a subsequence (A, )=, such that A, ., /(M. — Ak,) > krr >
r+1forall » > 1. Then, it follows that Ay, , < A, ((r+1)/r) and so A, ., < A, (r+1)
for all » > 1. Thus, we deduce that 1/(r + 1) < Ay, /Ag,,, for all » > 1 and so
(1/Ak,,,) ¢ €1 which contradicts with our hypothesis 1/A € ¢;. Hence, our claim is
true (as ugyq; > 1 for all k). Further, since limg oo Aug) = limg_,oo ug/k; we find
that 0 < limy_yoo A(ug) < 1. Moreover limy_,o, A(ug) # 1. For, if limy oo A(ug) = 1;
we can similarly get A\, < ak for some positive real a > 0 which is a contradiction
with 1/ € ¢;. Therefore, we conclude that 0 < limg_,o A(ug) < 1. To prove (2),
assume that a = limy o A(ug), where 0 < a < 1. Then, for every positive real
e > 0, there is a positive integer ¥ = k’(e) such that |A(ugy1) — a] < € and so
a—e<A(ugy1) <a+e forall k> k. Now, choose a positive real § < 1/2 such that
(1—a)/d<d<(l—a)/2andsod < (1—a)/2 < 2. Then, by taking e = (1—a)/2—0
with its ko = k/(¢), we get 0 < € < 1/2 and find that a+e = (14+a)/2—0 < 1—§ and
a—e> —e=0—(1—a)/2 > §—25 = —4. Hence, we deduce that —§ < A(ug41) < 1—9
for all k > ko, that is =0 < A(ug) < 1 —¢ for all k > ky. To prove (3), we obtain
from (2) that A(ugs1) < 1 and so 1+ A\ A(1/A(Mgy1)) < 1 for all & > ko, This
implies that A(Agy1) > A(Mg) for all & > ky. Thus, the sequence (A()\k:))zosz is
strictly increasing and cannot be bounded (as 1/A € ¢1). Therefore, it must tend to
oo. Also, by taking kg = max{ky, k2}, we get the common integer kq in parts (1), (2)
and (3). Finally, to prove (4), suppose that limy ., A(ux) = a, where 0 < a < 1
by part (1). Then, for every positive real ¢ > 0, there is a positive integer k' such
that [A(ug+1) —a| < € and so |1 + MA(1/A(Mgy1)) —a| < € for all & > k’. Thus
|(1—=a)/ A —[1/AN) —1/A(Ng) ]| < €/Ag forall k£ > k" and by taking the summation
in both sides from k& = n to oo and noting that A(\;) — oo as k — oo by (3), we get

=) - amy| 2

(s s0)
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Dividing both sides by the positive number > 7 1/X; (as 1/X € ¢; and Ay > 0 for
all k); we obtain that |(1 —a) — 1/t,| < € for all n > K/, and since € was arbitrary;
we deduce that 1/t, — 1 —a or t, — 1/(1 —a) as n — oo, and the other limit is
immediate by (3.4). This completes the proof. O

Lemma 3.4 Let 1/\ € {1 and suppose that t € c¢. Then, all the following are true:
(1) limg oo tx > 1 and A(s) € ¢ such that limg_,oo A(sg) > 0.

(2) If limg_,oo tx = b; then limg_oo A(ug) = (b—1)/b and limy_o A(sg) =b— 1.

o0

(3) There exists a positive integer ko such that the difference sequence (A(Mg) )iy,
is strictly increasing to oo.

Proof. Suppose that 1/\ € ¢; and ¢ € c. Then, it follows by (3.4) that A(s) € ¢ and
50 limy o0 A(s) = limg 00 S /k > 0 (since s > 0 for all k). Again, by (3.4) we get
limy 00 t, > 1. To prove (2), we first show that ¢t € ¢ implies A(u) € ¢. For this, it
follows from ¢ € ¢ that A(s) € ¢ and A(t) € ¢ such that limy_,o A(tx) = limy_o0 tr/k.
Thus, from (3.3), we find that A(sy) = A(tgur) = teA(ug) + uk—1A(tg) which implies
that limy o A(sk) = limy oo te( A(ug) + up—1/k) exists. Thus (A(ug) + ug_1/k) €
c. On other side, we have limy oo A(Sg) = limg_yoo A(tgug) = limg oo (trug)/k =
limy o0 £ (ur/k). Hence (ug/k) € ¢, and since (k/(k—1)) € ¢; we find that (ux_1/k) €
c. Therefore, we deduce that A(u) = (A(ug)) = (A(ug)+ug—1/k)—(ux_1/k) € c. Now,
if limy oty = b; then by part (4) of Lemma 3.3 we get limg oo A(ug) = (b—1)/b
and the other limit is trivial. Finally, part (3) is now immediate by (3) of Lemma 3.3
because A(u) € c¢. This ends the proof. O

Lemma 3.5 Suppose that 1/\ € 1. Then, we have the following equivalences:
(1) A(u) € c if and only if t € c.
(2) A(u) € bv if and only if t € bv.
(3) sup, Sp_y |At )] < 0o if and only if A(u) € bu.

Proof. Suppose that 1/A € ¢;. Then, the equivalence in part (1) can be obtained
by combinig (4) of Lemma 3.3 and (2) of Lemma 3.4. To prove (2), let us first note
that bv C ¢. Thus, if A(u) € bv or t € bv; then A(u) € ¢ as well as ¢t € ¢. Hence,
in both direction of current equivalence, we have A(u) € ¢ and t € c¢. Therefore, it
follows by (2) of Lemma 3.3 that there are § > 0 (real) and ky > 1 (integer) such
that 6 <1 — A(ur) < 140 for all & > ko. Thus (1 — A(ugy1) )72y, is a convergent
sequence of positive reals with non-zero limit, that is (1 — A(ug1)) € ¢\ co. Also,
it is obvious that t is a convergent sequence of positive reals with non-zero limit,
that is ¢ € ¢\ ¢g. Further, it follows by (4) of Lemma 3.3 and (2) of Lemma 3.4 that
limy o0 T (1—A(ug41)) = 1. Hence, if A(u) € bvor t € bv; then (£, (1—A(ugs1)) ) € bv
and so (A[tr(1 — A(ugs1))]) € ¢1. Therefore, we obtain that

(ALt = Aws))]) = (A1 = Alugn)) + (1= Alu)Alt) ) € 6

Albaydha University Journal 3 (2), 2021



65

(sLlasad) Amalad ALY alad) jaligall dlagly pald a32) 2021 Gabau | (2)03ad) — (3)alaal) — slianl) daals Alaa

Now, if ¢ € bu; then A(t) € ¢; and so ((1 — A(ug))A(tx)) € ¢ which implies that
(tkA(1—=A(ugs1))) € £1 and hence ( A(1—A(ugy1))) € 41 (ast € ¢\co) and this means
that (1—A(ug41)) € bv and so A(u) € bv. Similarly, if A(u) € bv; then (1 —A(ugs1)) €
bv and so ( A(1—A(ug+1))) € ¢4 which implies that (txA(1—A(ugs1)) ) € ¢1 and hence
((1—A(ug)A(ty) ) € £1. Thus (A(ty) ) € €1 (as (1 —A(ug)) € ¢\ co), that is A(t) € 4
and so ¢t € bv. Finally, to prove (3), let us first note that ¢ € ¢ in both direction of
current equivanence (as we have already shown in proving (2)) and hence there is an
integer ko > 1 such that (A(Ag))2, is strictly increasing to oo by (3) of Lemma 3.4.
Now, let n > 2. Then, for every k < n, we have ty11 — 171 = (ths1/AMns1) ) A(Akt1)
and so A(tpr1 — 1) = (tay1/AAng1) ) (A(Aeg1) — A(Ag) ). Thus, it follows that

[18tke)] = A € [A(tn) = Al = 55 180) - AR

and by taking the summation from k£ =1 to n — 1, we get

> (1At = A < 3 18] = 1| = O (G5 taer)

But (ter AOW)/ A1) € foo and 50 (S 1A (i) — 4ot 1A ()1, € b
Therefore, we deduce that (37— [A(t71)]) € loo == (521 |A(tk11)]) € loo, that
is sup, S A )] < 00 30 A ()| = sup, Sy At )] < oo which
can equivalently be written as sup, S p—; [A(tf,,)] < 00 <=t € bv. But t € by <=
A(u) € bv by part (2) and this completes the proof. O

Lemma 3.6 ([15, pp. 3-4]) For any infinite matriv A = |ank|, we have the following:

(1) A€ (cs,c) if and only if the following two conditions hold:

lim a,; ezists for every k> 1, (3.5)
n—oo
supz |k — A, 41| < 00. (3.6)
" k=1

(2) A€ (bs,lx) if and only if both (3.6) and the following condition hold:
lim a,, =0 for every n > 1. (3.7)
k—oo

Theorem 3.7 Let u = (uy) be defined by ux = A,/ (A — Me—1) for all k > 1. Then,
we have the following facts:

(1) The inclusions cs C cs* and bs C bs* hold if and only if 1/ € £y and A(u) € bv.
(2) The equalities cs® = cs and bs* = bs hold if and only if u € ls and A(u) € buy.

(3) The inclusions cs C cs* and bs C bs* strictly hold if and only if 1/\ € {4,
u ¢ Uy and A(u) € bv.
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Proof. To prove (1), suppose that the inclusions cs C c¢s* and bs C bs* hold. Then,
we have e; € cs and e; € bs, where e; = (1,0,0,---). Thus, we must have e; € cs*
as well as e; € bs*. This implies that A(e;) € ¢ and A(ey) € (o, respectively. Also,
by using (2.2), we find that A,(e)) = Ay 0, (1/A) = A\ Sor_,(1/A) for all n > 1. Thus,
we conclude that o(1/A) € ¢ and o(1/)\) € ¢ and hence 1/\ € ¢s and 1/\ € bs,
respectively. Therefore, in both cases, we have obtained the same result which is
1/X\ € ¢4 (see Remark 3.2). That is 1/\ € /; is necessary condition for both given
inclusions (see Example 2.5). Thus, we assume that 1/\ € ¢; and then it can easily
be seen that the inclusions ¢s C ¢s* and bs C bs* hold if and only if A € (cs,s) and
Ae (bs, l), respectively. To see that, we have the following equivalences:

cs Cesd « wecsforallz €cs « Aa)ecforallz€cs <= A€ (cs,0),

bs C bs* <= x e bs forallz € bs <= A(z) € Uy for allz € bs <= A € (bs, (o).

Thus, to deduce the other necessary and sufficient conditions, we have to use the
required conditions for A € (cs,s) and A € (bs, (o) by means of Lemma 3.6 for the
matrix A instead of A. For this, it follows from (3.1) and the definition of our matrix
A that Ay = ty for 1 < k < n and A = 0 for k > n, where n,k > 1. Thus, by
using the intries of A, we deduce from condition (3.5) that lim, Mg = lim,, oo ty
exists for every k > 1. But these limits actually exist for all & > 1 (as 1/\ € £y),
where lim, o t} =ty = A(A\g) Z;’ik 1/A; for each k. Thus, condition (3.5) is already

satisfied for A. Also, condition (3.7) trivially holds, since Aisa triangle and so Ak =0
when k£ > n for each n > 1 and this impliess that limj_, j\nk = 0 for every n > 1.
Thus, the common condition (3.6) is left, and this condition together with 1/ € ¢, are
the necessary and sufficient conditions for both inclusions. Moreover, for every n, k > 1
we have

) ) (— Atyi); (k <n),

Ank = Ap k41 = A(An)/An; (k=n),

0; (k >mn),

\

>

. . A )\n n—1 .
Ank = Anjet1| = ; ) + Z | A )]
" k=1

—_

k
and since (A(N,)/\,) € loo; we deduce that sup, > -, Ank — Anps1| < oo if and
only if sup, Sr_} | (t%,1)] < oo. Therefore, condition (3.6) is satisfied for A if and
only if sup, S7—; |A(t;,1)| < oo (or equivalently A(u) € bv by (3) of Lemma 3.5).
Consequently, the inclusions c¢s C cs* and bs C bs* hold if and only if 1/\ € ¢; and
A(u) € bv. To prove (2), we have the equality xp — Ag_1(z) = ug [Ax(z) — Ap—1(2)]
which is satisfied for any z € w and every k > 1 (see [12, Lemma 4.1]). Thus, by
taking the summation of both sides from £ =1 to n > 1, we get the following relation:

ou(@) = Ai(@) = 3w [Anle) — Aia(@)], (0> 1)

which can be written as follows:

3

On(®) = A1 (2) =ty A () =Y Augr) Ap(z), (0 >1). (3.8)

k=1

Albaydha University Journal 3 (2), 2021



67

(Ll daalad (AEN oalal) jaligall Gilash pald s3e) 2021 (b (2)03ad) — (3)alaal) — plianl) daaly dlxa

Now, if the equalities cs* = cs and bs* = bs hold; we deduce from (3.8) that u € ., and
A(u) € bu. But bv C ¢ and so A(u) € ¢ such that limg_,oo A(ug) = limg_yoo ug/k = 0
(since u is bounded) which implies that A(u) € bvg, where bvy = bv N ¢y. Conversely,
if u € o and A(u) € bup; it follows from (3.8) that x € cs* & z € cs as well as
x € bs* < x € bs, which means that both equalities cs* = cs and bs* = bs are satisfied
(we may note that: (i) u € oo = 1/X\ € £y, (ii) 2y € c¢s for all x € cs < y € bv, and
(ili) zy € bs for all = € bs < y € buy). Finally, part (3) follows from (1) and (2). O

Corollary 3.8 If the inclusion cs C cs* holds; then for every sequence x € cs we have
limy, oo Ay (2) = imyyyoo D gy (R @ = limy, o0 Y py ti 2. That s

Jig D2 (300 3§ Y= Ji 3 (300 31 e

Proof. We have An(@ = 22:1 e Tk = ZZ:1 bk T — (ZJ n+1 1/)‘ )(ZZ A k)Tk)
for all n, and since zj, = oy(x) — op_1(x); we get > p_ AAp)zr = A(Npt1)on(z) —

Yo (A(Ngs1) — A(XNg) ) ox(x). Thus, we obtain that

~

A (z) = Ztk T + g1 (Gn(2) — on(z) ),

k=1

where 6,(¢) = (1/A(hs1) S (Aus1) = A\ ) ox(a). That is 5(x) = A(o(x)
and A is the matrix A with the sequence (A(\,1)) instead of (\y), where (Akr1))ihy
is strictly increasing to oo (for some integer ky > 1 by Lemma 3.3). Hence, we conclude
that limy, o ,(2) = lim,_,o 0, (2) by regularity of such matrices. Therefore, our result
is now proved by going to the limits in both sides of above equality as n — oo. O

Corollary 3.9 The inclusion csy C csy strictly holds if and only if there exists a
positive real number 0 < a < 1 such that A(ugs1) = a for all k > 1 (equivalently:
csy C cspy strictly holds if and only if there exists a positive real number b > 1 such that
ty = b for all k > 1). Furthermore, the equality csy = csy cannot be held.

Proof. Assume A(upi1) = a (0 < a < 1) for all & > 1, ie. (A(ug), A(us),---) is
constant. Then 1 + AMA(1/A(Mg11)) = a and so 1/A(Ng) — 1/A(Mer1) = (1 — a)/Ax.
Thus A()) is increasing to oo and by taking the summation from k& = n to oo we get
tn, =1/(1—a) foralln > 1 (t, is constant). In such case, it is obvious that 1/\ € ¢; and
A(u) € bv. Thus, it follows by (1) of Theorem 3.7 that the inclusion ¢s C cs* holds.
Also, for any x € csq, we have z € cs* (since csy C ¢s C ¢s?). Thus, we deduce from
Corollary 3.8 that lim,, An( )= (1 / (1 —a))lim, o 0p(x) = 0 which means that
x € csy. Hence, the inclusion csy C csy holds. Conversely, if the inclusion csy C cs)
holds; then for each k > 1, we have lim,_. A, (éx) = 0, where é; = e — ex41 € ¢S
for all k. But lim,,_, An(ék) = —A(tgs1) and so A(tk+1) = 0 for all k > 1. Thus,
there exists a positive real b > 1 such that ¢, = b for all £ > 1 (as t; > 1). Hence
tk/A()\k) _tk+1/A()\k+1) = b/A()\k) — b/A()\k_H) and so 1 — 1/b =1 —I—/\kA(l/A()\k_,_l))
which yields A(ukH) =(b—-1)/bforall k>1and 0 < (b—1)/b < 1. Further, if the
inclusion csy C cs holds; then it must be strict, since the equality can only be held if
a =0 (see (2) of Theorem 3.7) which is impossible (as A(uz) # 0). O

At the end of this section, we give a general example to support our main results.
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Example 3.10 For each non-negative integer m > 0, we will define other spaces
cs)(m), cs*(m) and bs*(m) (as particular cases of our spaces) such that the inclusions
cso C csp(m), cs C cs*(m) and bs C bs*(m) strictly hold by Corollary 3.9. That is, it
will be there an infinitely many number of the spaces according to m. For this, define
the sequence A™ = (\;) by \p = k(k+1)---(k+m+1) = (k+m+ 1)!/(k —1)! for
all k > 1. Then, it can easily be deriving the following (k,n > 1):

AXg) = (m+2)[(K+m)!/(k—1)]

u,=(k+m+1)/(m+2), A(ug) =1/(m +2) (constant)

1 1 = . 1 1
N G+ G+m+1) (m+1) Zo_l <z> [j+z'_j+i+1]

7=

1 1 1] 1 [(k-1!  al
— ) ( m+1|Z ( >|:k‘+l n—i—i—i—l}_m—i—l{(k—i—m)! (n+m+1)!
n 1 _ om+2 kE+m n+m-+1
tk_A(Ak),kA_j_m+1{1_<k—1>/< n >]

oo
1
Z 1 _m+2 (constant)

Aj om+
j=k
M) =g | <x>—;xk<m>/<“z+l>
b = 50T a1 /()

Further, from the equality ¢, = (m+2) /(m+1); we deduce the following new or known
formulae for summation (m > 0 and k& > 1):

G m+ 1 1
nznn+1 +n+m+1) k(k+1)---(k+m)
;nrwl—l 1n—|—m+1) (m+1 'Z ( >/k:+z)
Z(;(_l)i@)/(’“ = 1)7-7?!- (v m)

(/) -

n=

On other side, we must note that the condition 0 < @ < 1 (or b > 1) is necessary in
Corollary 3.9 (see Example 2.5 for the case a = 1). Also, if A\, = o* (a > 1); then
A(ug) # 0 while A(ug) =0 for k > 2 and ¢; # 1 while t, =1 for k > 1.
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4 Schauder bases for the spaces csé and cs*

In the last section, we construct the Schauder bases for the A-sequence spaces cs) and
s*, and we conclude their separability.

If a normed space X contains a sequence (by),-, with the property that for every x € X
there is a unique sequence (ay),-, of scalars such that

ILm |z — (b + agby + -+ 4+ aby)|| = 0;

then the sequence (by),; is called a Schauder basis for X (or simply a basis for X)
and the series >~ | ayby which has the sum x is then called the expansion of z, with
respect to the given basis, which can be written as © = Y~ axbg, and we then say
that x has been uniquely represented in that form. For example, the two sequences
(e1,eq,€3,--+) and (e, e, eq,e3,---) are the Schauder bases for the sequence spaces ¢
and ¢, where e = (1,1,1,---) and e = (,x)22, for each k > 1 [8].

Theorem 4.1 For each k > 1, define the sequence e} = (e).)S2, for everyn > 1 by

( )\]{:

SV n=k),

A — Ak—1 ( )
N1 + )\k>

—(—); (m=k+1),

N = <)\k+1 =N\ ( )

At1

—_— n=k+2),

Atz = Akt ( )

0; (otherwise).

\

Then, the sequence (62) —y s a Schauder basis for the space csy and every T € csy has

a unique representation of the following form:
x = Z Ap(z) e} . (4.1)

Proof. For each k£ > 1, it can easily be seen that

* Mest — M) 0 N — A

Thus, by using (2.1), we ﬁnd that A(e}) = ex — epsq and so A(e}) = ej,. This implies
that A(ek) € ¢p and hence ek € cs)) for all k > 1 which means that (e ) is a sequence
in cs). Further, let x € cs) be given and for every positive integer m, We put

™ = ZAk(x) ep.
k=1

Then, by operating A on both sides, we find that

AC™) = Ao Aed) = 3 Al
k=1

k=1
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and hence
R 0; (1<n<m),

A (2 — 2t™) =
Ay (x); (n>m).

Now, since f\(:c) € ¢p; for any positive real € > 0, there is a positive integer mg such
that |A,,(z)| < € for every m > my. Thus, for any m > mg, we have
|2 — x(m)H/\ = sup |[A,(2)] < sup |A(z)| <e.
n>m n>mo
We therefore deduce that lim,,_ |2 — 2™ ||y = 0 which means that x is represented
as in (4.1). Thus, it is remaining to show the uniqueness of the representation (4.1) of
. For this, suppose that z = Y ;7| ax ep. Then, we have to show that o, = A, (z) for

all n, which is immediate by operating A,, on both sides of (4.1) for each n > 1, where
the continuity of A (as we have seen in Remark 2.4) allows us to obtain that

An(x) = Zak /A\n(eg) = Zock Onke = Qi
k=1 k=1

for all n > 1 and hence the representation (4.1) of = is unique, and this step completes
the proof. O

Theorem 4.2 The sequence (e)‘, er, ey, ) is a Schauder basis for the space cs

every x € cs* has a unique representation in the following form:

A and

r=Le+ f: (Ak(x) - L) e, (4.2)
k=1

where L = lim,_o Ay (2), the sequence (eﬁ)zozl
following sequence:

A A

A 1 1

— — — 1. — 0 .
e €1 ()\2 )\1)62 ( s )\2 )\1, 07 ,0, )

Proof. It can easily shown that A(e) = e; and so A(e)) = e € ¢ which means
e* € es*. This together with e} € cs) C cs* imply that (e)‘, e, ey, ) is a sequence

is as in Theorem 4.1 and e* is the

in cs*. Also, let x € ¢s* be given. Then A(:v) € ¢ which yields the convergence of the
sequence A(z) to a unique limit, say L = lim,,_,o A, (z). Thus, by taking y = = — L e,
we get A(y) = A(z) — Le € ¢y and so y € ¢s). Hence, it follows by Theorem 4.1 that
y can be uniquely represented in the following form:

=3 Mel)ed =3 (Aule) = LA(e) ek = 3 (Aulw) = L) e,
k=1 k=1 k=1
Consequently, our x can also be uniquely written as
v=Let+y= Le’\—l—z (Ak(x) —L) ey
k=1

which proves the unique representation (4.2) of z. O
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Corollary 4.3 We have the following facts:

(1)
(2)

The spaces csy and cs® are separable BK-spaces.

The space bs* is a non-separable BK-space and has no a Schauder basis.

Remark 4.4 We end our work by expressing from now on that the aim of our next
paper is to determining the duals of our A-sequence spaces bs*, cs* and cs), and
characterizing some matrix operators between them.
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