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Abstract. 

 The notion of matrix domains of triangles in sequence spaces has largely been used to define new 

sequence spaces in terms of old ones. In this research paper, we will use this idea to introduce some 

new sequence spaces related to bounded and convergent series. Also, some properties of our spaces 

will derived. Further, we will establish some new inclusion relations between them. Moreover, the 

Schauder basis of these spaces will be discussed. 
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1 Introduction 

In this paper, we use w for the linear space of 

all real or complex sequences, and any 

sequence x ∈ w will be simply written as x = 

(xk) instead of . Also, we will 

use the conventions e = (1,1,1,...) and 

 for each k ≥ 1, that is ek is the 

sequence whose only one non-zero term 

which is the k-term and is equal to 1, Also, 

any term with non-positive subscript is equal  

to zero, i.e. x0 = 0 and x−1 = 0. Any linear 

subspace of w is called a sequence space. We 

will write ℓ∞ ,c and c0 for the classical 

sequence spaces of bounded, convergent and 

null sequences, respectively. Also, we will 

write bs, cs and cs0 for the sequence spaces 

consisting of sequences associated with 

bounded, convergent and null series, 

respectively. That is 

 

 

) exists} 

And     . 

Thus x belongs to bs, cs or cs0 whenever the 

series  is bounded, convergent or 

convergent to zero, respectively. Further, for 

each 1 ≤ p < ∞, the space 𝑙𝑝 =
{𝑥𝜖𝑤: ∑ |𝑥𝑘|𝑝∞

𝑘=1 < ∞}  allcontains

withassocitedsequences p-absolutely 

andseriesconvergent 𝑏𝑣 =  {𝑥 ∈

 𝑤: ∑ |𝑥𝑘 − 𝑥𝑘−1|  <  ∞} is the space of 

sequences with bounded variation [8]. By a 

BK-space we mean a Banach sequence space 

with continuous coordinates. The spaces ℓ ,c 
and c0 are BK-spaces ∞ with their natural 

norm ∥ · ∥∞ defined by ∥x∥∞= supk |xk|, where 

the supremum is taking over all integers k ≥ 
1, and ℓp is a BK-space with the p-norm given 

by‖𝑥‖𝑥 = 𝑠𝑢𝑝𝑛|∑ 𝑥𝑘
𝑛
𝑘=1 |𝑝. Also, the spaces 

bs, cs and cs0 are BK-spaces with their norm 

k∥·∥s defined by ‖𝑥‖𝑝 = ∑ |𝑥𝑘|𝑝∞
𝑘=1 [16]. An 

infinite matrix A whose real or complex 

entries ank for all n,k ≥ 1 will be written as A 

= [ank] instead of , and the act 

of A on any sequence x ∈ w is called the A-

transform of  x, and is defined to be the 

sequence , where 

 ,   (n ≥ 1) 
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provided that series on the right hand side converges for each n, and we then say that
A (x) exists. For two sequence spaces X and Y , we say that an infinite matrix A de-
fines a matrix operator form X to Y , which is a linear operator, and we denote it by
A : X → Y , if A acts form X to Y , i.e, if for every sequence x ∈ X; the A-transform
of x exists and is in Y . Moreover, we will write (X : Y ) for the class of all infinite
matrices that map X into Y , i.e, A ∈ (X : Y ) if and only if A (x) exists and A (x) ∈ Y
for every x ∈ X [8]. Further, the matrix domain of A in a sequence space X is denoted
by XA which is a sequence space defined as XA = {x ∈ w : A(x) ∈ X}. An infinite
matrix A is called a triangle, if ank = 0 for all k ≥ n and ann ̸= 0 for all n, where
n, k ≥ 1. The matrix domain of a triangle in a sequence space has a special important.
For example, if X is a BK-space with its norm ∥·∥ and A is a triangle, then the matrix
domain XA is also a BK-space with the norm ∥ · ∥A defined by ∥x∥A =∥A(x)∥ for all
x ∈ XA [16]. We will write σ for the sum-matrix which is a triangle defining the partial
summation, that is σ(x) = (

∑n
k=1 xk)

∞
n=1 which means that σn(x) =

∑n
k=1 xk for all n.

Then, it can be seen that bs = (ℓ∞)σ, cs = (c)σ and cs0 = (c0)σ. Also, by ∆ we mean
the band matrix of difference, i.e, ∆(x) = (xn − xn−1)

∞
n=1 = (x1, x2 − x1, x3 − x2, · · · )

which means that ∆(xk) = xk − xk−1 for all k and so the space bv can be defined as
bv = (ℓ1)∆. The idea of constructing a new sequence space by means of the matrix
domain of a particular triangle has largely been used by several authors in different
ways. For instance, see [1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 14, 17, 18, 19] and [20].

2 The new λ-sequence spaces bsλ , csλ and csλ0

In this section, we introduce the new λ-sequence spaces bsλ, csλ and csλ0 , and show
that these spaces are BK-spaces which are isometrically isomorphic to the spaces ℓ∞,
c and c0, respectively.

Here and in what follows, we assume throughout that λ = (λj)
∞
j=1 is a strictly increasing

sequence of positive reals tending to ∞. That is 0 < λ1 < λ2 < · · · and λj → ∞ as
j → ∞. Also, we define the triangle Λ = [λnk] for every n, k ≥ 1 by

λnk =


λk − λk−1

λn

; (1 ≤ k ≤ n),

0 ; (k > n ≥ 1).

Then, for any x ∈ w, we have the sequence Λ(x) = (Λn(x))
∞
n=1, where

Λk(x) =
1

λk

k∑
j=1

(λj − λj−1)xj (; k ≥ 1). (2.1)

The λ-sequence spaces cλ0 , cλ, ℓλ∞ and ℓλ1 have been introduced by Mursaleen and Noman
[10, 12] as the matrix domains of Λ in the spaces c0, c, ℓ∞ and ℓ1, respectively. That
is cλ0 = {x ∈ w : Λ(x) ∈ c0}, cλ = {x ∈ w : Λ(x) ∈ c}, ℓλ∞ = {x ∈ w : Λ(x) ∈ ℓ∞}
and ℓλ1 = {x ∈ w : Λ(x) ∈ ℓ1}.
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As a natural continuation, we follow them to introduce the new spaces bsλ, csλ and
csλ0 as the matrix domains of Λ in the spaces bs, cs and cs0, respectively. That is
bsλ = (bs)Λ = {x ∈ w : Λ(x) ∈ bs}, csλ = (cs)Λ = {x ∈ w : Λ(x) ∈ cs} and
csλ0 = (cs0)Λ = {x ∈ w : Λ(x) ∈ cs0}. So that, our contribution is the following new
spaces:

bsλ =

{
x ∈ w : sup

n

∣∣∣∣∣
n∑

k=1

Λk(x)

∣∣∣∣∣ < ∞

}
,

csλ =

{
x ∈ w lim:

n→∞

(
n∑

k=1

Λk(x)

)
exists

}
,

csλ0 =

{
x ∈ w lim:

n→∞

(
n∑

k=1

Λk(x)

)
= 0

}
.

Besides, we define the triangle Λ̂ = [λ̂nk] for every n, k ≥ 1 by

λ̂nk =

 (λk − λk−1)
n∑

j=k

1

λj

; (1 ≤ k ≤ n),

0 ; (k > n ≥ 1).

Then, for every x ∈ w, we have

Λ̂n(x) =
n∑

k=1

( n∑
j=k

1

λj

)
(λk − λk−1)xk , (n ≥ 1). (2.2)

Thus, it can easily be seen that Λ̂(x) = σ( Λ(x) ) for every x ∈ w which can be written
as follows:

Λ̂n(x) =
n∑

k=1

Λk(x) , (n ≥ 1). (2.3)

It follows that our bsλ, csλ and csλ0 are sequence spaces which can be redefined as the
matrix domains of Λ̂ in the spaces ℓ∞, c and c0, respectively. That is

bsλ = (ℓ∞)Λ̂ , csλ = (c)Λ̂ and csλ0 = (c0)Λ̂. (2.4)

Thus, we have bsλ = {x ∈ w : Λ̂(x) ∈ ℓ∞}, csλ = {x ∈ w : Λ̂(x) ∈ c} and csλ0 = {x ∈
w : Λ̂(x) ∈ c0}, and we may begin now with the following result which is essential in
the text:

Lemma 2.1 The λ-sequence spaces bsλ, csλ and csλ0 are BK-spaces with the norm
∥ · ∥λ defined, for every sequence x in these spaces, by

∥x∥λ = ∥Λ̂(x)∥∞ = sup
n

∣∣∣Λ̂n(x)
∣∣∣ = sup

n

∣∣∣∣ n∑
k=1

Λk(x)

∣∣∣∣.
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Proof. Since Λ̂ is a triangle; this result is immediate by (2.4) and the fact that ℓ∞, c
and c0 are BK-spaces with their natural norm ∥ · ∥∞ ( Maddox [8, pp.217–218]). To
see that, the famous result of Wilansky [16, Theorem 4.3.12, p.63] tells us that bsλ, csλ
and csλ0 are BK-spaces with the given norm and this completes the proof. 2

Theorem 2.2 The λ-sequence spaces bsλ, csλ and csλ0 are isometrically linear-isomorphic
to the spaces ℓ∞, c and c0, respectively. That is bsλ ∼= ℓ∞ , csλ ∼= c, and csλ0

∼= c0.

Proof. To prove this result, we will show that there exists a linear bijection between
the spaces bsλ and ℓ∞ which preserves the norm. For this, we can use the definition of
the space bsλ to define a linear operator by means of the matrix operator Λ̂ : bsλ → ℓ∞
by x 7→ Λ̂(x). Then, it is obvious that Λ̂(x) = 0 implies x = 0, and so Λ̂ is injective.
Also, let y ∈ ℓ∞ be given and define a sequence x = (xj) in terms of the sequence y by

xj =
λj ∆(yj)− λj−1∆(yj−1)

λj − λj−1

; (j ≥ 1),

where y0 = 0. Then, it follows by (2.1) that

Λk(x) =
1

λk

k∑
j=1

[λj ∆(yj)− λj−1∆(yj−1)] = ∆(yk) , (k ≥ 1).

Thus, by using (2.3), we find that Λ̂n(x) =
∑n

k=1∆(yk) = yn for all n, which means
that Λ̂(x) = y, but y ∈ ℓ∞ and so Λ̂(x) ∈ ℓ∞. Thus, we deduce that x ∈ bsλ such
that Λ̂(x) = y and hence Λ̂ is surjective. Further, it is clear by Lemma 2.1 that Λ̂ is
norm preserving, since ∥Λ̂(x)∥∞ = ∥x∥λ for every x ∈ bsλ. Therefore, the mapping
Λ̂ : bsλ → ℓ∞ is a linear bijection preserving the norm. That is, our Λ̂ is an isometry
isomorphism between bsλ and ℓ∞ which means that bsλ ∼= ℓ∞. Similarly, it can be
shown that csλ ∼= c, and csλ0

∼= c0. 2

Corollary 2.3 The λ-sequence spaces bsλ, csλ and csλ0 are isometrically linear-isomorphic
to the spaces bs, cs and cs0, respectively. That is bsλ ∼= bs , csλ ∼= cs, and csλ0

∼= cs0.

Proof. It is immediate by Theorem 2.2 and the facts that bs ∼= ℓ∞ , cs ∼= c, and
cs0 ∼= c0. 2

Remark 2.4 We have already shown in the proof of Theorem 2.2 that the matrix Λ̂
defines a linear operator from any of the spaces bsλ, cs or cs0 into the respective one
of the spaces ℓ∞, c or c0, is an isometry isomorphism, and this implies the continuity
of the matrix operator Λ̂ which will be used in the sequel.

At the end of this section, we give an example to show that our new spaces bsλ, csλ
and csλ0 are totally different from the spaces ℓ∞, c, c0, bs, cs and cs0. For simplicity in
notations, we will use the symbole µ to denote any of the spaces bs, cs or cs0 and so
µλ is the respective one of the spaces bsλ, csλ or csλ0 , and µ∗ denotes the related space
among the spaces ℓ∞, c or c0.
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Example 2.5 In this example, our aim is to show that our spaces µλ are different
from all the sequence spaces µ and µ∗. For this, consider the sequence λ = (λk) defined
by λk = k and so ∆(λk) = 1 for all k ≥ 1. Then, for any x ∈ w, we have Λk(x) =
(1/k)

∑k
j=1 xj = σk(x)/k and Λ̂n(x) =

∑n
k=1 Λk(x) for all k, n ≥ 1. Thus, our spaces

can be defined as µλ = {x ∈ w : (σk(x)/k ) ∈ µ} = {x ∈ w : (
∑n

k=1 σk(x)/k ) ∈ µ∗}.
Also, define the unbounded sequence z = (zk) by z1 = 1 and for k > 1 by

zk =

k
√

2/(k + 1) + (k − 1)
√
2/(k − 1); (k is odd),

−(2k − 1)
√

2/k ; (k is even).

Then, we have z /∈ ℓ∞ and so z /∈ µ∗ which also implies that z /∈ bs and hence z /∈ µ
which can independently be obtained from σk(z) = k

√
2/(k + 1) when k is odd and

σk(z) = −k
√

2/k when k is even. Further, we have Λk(z) =
√
2/(k + 1) when k is

odd and Λk(z) = −
√

2/k when k is even. Thus, we get Λ̂n(z) =
√
2/(n+ 1) when

n is odd and Λ̂n(z) = 0 when n is even. This implies that Λ̂(z) ∈ c0 and so z ∈ csλ0
which leads us to z ∈ µλ. Hence, we have shown that z ∈ µλ while z /∈ µ as well
as z /∈ µ∗. Therefore, we deduce that µλ ̸⊂ µ and µλ ̸⊂ µ∗. On other side, consider
the sequence z′ = (z′k) defined by z′k = ∆( 1/ log(1 + k) ) for all k ≥ 1 with noting
that z′1 = 1/ log 2. Then, we get σ(z′) = ( 1/ log(1 + k) ) ∈ c0 and so z′ ∈ cs0 which
implies both z′ ∈ µ and z′ ∈ µ∗. Besides, we find that Λ(z′) = ( 1/(k log(1 + k)) ) and
so Λ̂n(z

′) =
∑n

k=1 1/(k log(1+ k)) which diverges to ∞ as n → ∞ and this means that
z′ /∈ bsλ and so z′ /∈ µλ. Hence, we have shown that z′ /∈ µλ while z′ ∈ µ and z′ ∈ µ∗.
Therefore, we deduce that µ ̸⊂ µλ as well as µ∗ ̸⊂ µλ. Consequently, we conclude that
the spaces µλ are totally different from all the spaces µ and µ∗.

3 Some inclusion relations

In the present section, we establish some new inclusion relations concerning the λ-
sequence spaces bsλ, csλ and csλ0 . We essentially characterize the case in which the
inclusions bs ⊂ bsλ, cs ⊂ csλ and cs0 ⊂ csλ0 hold, and discuss their equalities.

Lemma 3.1 We have the following facts:

(1) The inclusions csλ0 ⊂ csλ ⊂ bsλ strictly hold.

(2) The inclusions ℓλ1 ⊂ csλ ⊂ cλ0 and ℓλ1 ⊂ bsλ ⊂ ℓλ∞ strictly hold.

(3) The inclusion csλ0 ⊂ cλ0 strictly holds.

(4) If 1/λ ∈ ℓ1 ; then the inclusion ℓ1 ⊂ csλ strictly holds, where 1/λ = (1/λj)
∞
j=1.

(5) The space ℓ1 cannot be included in csλ0 .

Proof. (1) the inclusions csλ0 ⊂ csλ ⊂ bsλ are obviously satisfied (by the well-known
inclusions cs0 ⊂ cs ⊂ bs). Also, to show that these inclusions are strict, define the
sequence x = (xj) by xj = (2−j λj − 2−(j−1) λj−1)/(λj − λj−1) for all j ≥ 1. Then, by
using (2.1), we find that Λk(x) = 2−k for every k ≥ 1 and so Λ̂(x) = (1− 2−n) ∈ c \ c0.
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This means that x ∈ csλ \ csλ0 and so the inclusion csλ0 ⊂ csλ is strict. Also, define
the sequence y = (yj) by yj = (−1)j(λj + λj−1)/(λj − λj−1) for all j ≥ 1 . Then, for
every k ≥ 1, we find that Λk(y) = (1/λk)

∑k
j=1(−1)j(λj + λj−1) = (−1)k and hence

Λ̂n(y) = −1 when n is odd or Λ̂n(y) = 0 when n is even. Thus, we deduce that
Λ̂(y) ∈ ℓ∞ \ c which means that y ∈ bsλ \ csλ and hence the inclusion csλ ⊂ bsλ is also
strict, and part (1) has been proved. To prove part (2), let x ∈ ℓλ1 . Then, the series∑∞

k=1 Λk(x) is absolutely convergent and so it converges which means that x ∈ csλ

and hence the inclusion ℓλ1 ⊂ csλ holds which implies the inclusion ℓλ1 ⊂ bsλ. Also, if
x ∈ csλ; then it follows, from the convergence of the series

∑∞
k=1 Λk(x), that Λ(x) ∈ c0

and hence x ∈ cλ0 which means that the inclusion csλ ⊂ cλ0 holds. Similarly, we can
show that bsλ ⊂ ℓλ∞ holds. To show that these inclusions are strict, define the sequence
x = (xj) by xj = (−1)j[ (λj/(j + 1)) + (λj−1/j) ]/(λj − λj−1) for every j ≥ 1 Then, it
can easily be seen that Λ(x) = ( (−1)k/(k + 1) ) ∈ cs \ ℓ1 and so x ∈ csλ \ ℓλ1 which
means that the inclusion ℓλ1 ⊂ csλ is strict, and so is the inclusion ℓλ1 ⊂ bsλ. Further,
define the sequence y = (yj) by yj = [∆(λj/(j+1) )]/(λj−λj−1) for every j ≥ 1. Then,
it is easy to show that Λ(y) = ( 1/(k+ 1) ) ∈ c0 \ cs which means that y ∈ cλ0 \ csλ and
so the inclusion csλ ⊂ cλ0 is strict. Finally, it is clear that Λ(e) = e ∈ ℓ∞ \ bs which
implies that e ∈ ℓλ∞ \ bsλ and hence the inclusion bsλ ⊂ ℓλ∞ is also strict which ends
the proof of part(2). Moerover, part (3) is clear by combining the results of parts (1)
and (2). For part (4), suppose 1/λ ∈ ℓ1. Then, the inclusion ℓ1 ⊂ ℓλ1 holds (see [12,
Theorem 4.12] which tells us that: ℓ1 ⊂ ℓλ1 ⇐⇒ 1/λ ∈ ℓ1). Thus, the inclusion ℓ1 ⊂ csλ

is strict by (2). Finally, to prove (5), consider the sequence e1 = (1, 0, 0, · · · ). Then, it
is clear by (2.1) that Λk(e1) = λ1/λk for all k ≥ 1 and so Λ̂n(e1) = λ1 σn(1/λ) ≥ 1 for
all n (as λk > 0 for all k). Thus Λ̂(e1) /∈ c0 which means that e1 /∈ csλ0 while e1 ∈ ℓ1
and hence ℓ1 ̸⊂ csλ0 . This completes the proof. 2

Remark 3.2 As in part (4) of Lemma 3.1, we will use the convention 1/λ = (1/λj)
∞
j=1.

Also, since λ is a sequence of positive reals; we deduce that 1/λ /∈ cs0, but the sequence
of its partial sums σ(1/λ) is increasing whose positive terms and this leads us to the
following equivalences: 1/λ ∈ ℓ1 ⇐⇒ 1/λ ∈ cs ⇐⇒ 1/λ ∈ bs.

Now, in what follows and for simplicity in notations, we will use some conventions to
prove our main results concerning the inclusions bs ⊂ bsλ, cs ⊂ csλ and cs0 ⊂ csλ0 . For
this purpose, we are in need to quoting some additional lemmas and terminologies.

For any positive integer n, we define the following two positive real terms:

snk = λk

n∑
j=k

1

λj

and tnk = (λk − λk−1)
n∑

j=k

1

λj

, (1 ≤ k ≤ n). (3.1)

Further, if 1/λ ∈ ℓ1; then the limits snk → sk and tnk → tk (as n → ∞) exist for each
k ≥ 1. Thus, we can define the following three positive real sequences s = (sk), t = (tk)
and u = (uk) as follows:

sk = λk

∞∑
j=k

1

λj

, tk = ∆(λk)
∞∑
j=k

1

λj

and uk =
λk

λk − λk−1

, (k ≥ 1). (3.2)
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Moreover, it can easily be deriving the following equalities:

sk = tk uk (k ≥ 1) and snk = tnk uk (1 ≤ k ≤ n), (3.3)

tk = 1 +∆(sk) (k > 1) and tnk = 1 +∆(snk) (1 < k ≤ n), (3.4)
where the difference is taken over k, that is ∆(snk) = snk − snk−1 for every k ≤ n.
Lemma 3.3 Let 1/λ ∈ ℓ1 and suppose that ∆(u) ∈ c. Then, there must exist a positive
integer k0 satisfying all the following:

(1) 1 < uk < k for all k > k0 and so 0 ≤ limk→∞∆(uk) < 1.

(2) There is a positive real δ < 1/2 such that −δ < ∆(uk) < 1− δ for all k > k0.

(3) The difference sequence (∆(λk) )
∞
k=k0

is strictly increasing to ∞.

(4) If limk→∞ ∆(uk) = a; then limk→∞ tk = 1/(1−a) and limk→∞ ∆(sk) = a/(1−a).
Proof. Suppose that 1/λ ∈ ℓ1 and ∆(u) ∈ c which means that limk→∞∆(uk) exists.
Then limk→∞ uk/k exists (due to the equality between these two limits). Thus (uk/k) ∈
c ⊂ ℓ∞. Also, we claim that there is a positive integer k1 such that uk/k < 1 for all
k > k1 or uk+1/(k + 1) < 1 for all k ≥ k1 which can equivalently be written as
λk+1/(λk+1 − λk) < k + 1 for all k ≥ k1. Otherwise, suppose on contrary that the
sequence λ = (λk) has a subsequence (λkr)

∞
r=1 such that λkr+1/(λkr+1 − λkr) ≥ kr+1 ≥

r+1 for all r ≥ 1. Then, it follows that λkr+1 ≤ λkr ((r+1)/r) and so λkr+1 ≤ λk1 (r+1)
for all r ≥ 1. Thus, we deduce that 1/(r + 1) ≤ λk1/λkr+1 for all r ≥ 1 and so
( 1/λkr+1 ) /∈ ℓ1 which contradicts with our hypothesis 1/λ ∈ ℓ1. Hence, our claim is
true (as uk+1 > 1 for all k). Further, since limk→∞∆(uk) = limk→∞ uk/k ; we find
that 0 ≤ limk→∞∆(uk) ≤ 1. Moreover limk→∞∆(uk) ̸= 1. For, if limk→∞ ∆(uk) = 1;
we can similarly get λk ≤ ak for some positive real a > 0 which is a contradiction
with 1/λ ∈ ℓ1. Therefore, we conclude that 0 ≤ limk→∞ ∆(uk) < 1. To prove (2),
assume that a = limk→∞∆(uk), where 0 ≤ a < 1. Then, for every positive real
ϵ > 0, there is a positive integer k′ = k′(ϵ) such that |∆(uk+1) − a| < ϵ and so
a− ϵ < ∆(uk+1) < a+ ϵ for all k ≥ k′. Now, choose a positive real δ < 1/2 such that
(1−a)/4 < δ < (1−a)/2 and so δ < (1−a)/2 < 2δ. Then, by taking ϵ = (1−a)/2− δ
with its k2 = k′(ϵ), we get 0 < ϵ < 1/2 and find that a+ ϵ = (1+ a)/2− δ < 1− δ and
a−ϵ ≥ −ϵ = δ−(1−a)/2 > δ−2δ = −δ. Hence, we deduce that −δ < ∆(uk+1) < 1−δ
for all k ≥ k2, that is −δ < ∆(uk) < 1 − δ for all k > k2. To prove (3), we obtain
from (2) that ∆(uk+1) < 1 and so 1 + λk ∆( 1/∆(λk+1) ) < 1 for all k ≥ k2. This
implies that ∆(λk+1) > ∆(λk) for all k ≥ k2. Thus, the sequence (∆(λk) )

∞
k=k2

is
strictly increasing and cannot be bounded (as 1/λ ∈ ℓ1). Therefore, it must tend to
∞. Also, by taking k0 = max{k1, k2}, we get the common integer k0 in parts (1), (2)
and (3). Finally, to prove (4), suppose that limk→∞ ∆(uk) = a, where 0 ≤ a < 1
by part (1). Then, for every positive real ϵ > 0, there is a positive integer k′ such
that |∆(uk+1) − a| < ϵ and so |1 + λk∆( 1/∆(λk+1) ) − a| < ϵ for all k ≥ k′. Thus
| (1−a)/λk− [ 1/∆(λk)−1/∆(λk) ] | < ϵ/λk for all k ≥ k′ and by taking the summation
in both sides from k = n to ∞ and noting that ∆(λk) → ∞ as k → ∞ by (3), we get∣∣∣∣∣(1− a)

∞∑
k=n

1

λk

− 1

∆(λn)

∣∣∣∣∣ ≤
∞∑
k=n

∣∣∣∣1− a

λk

−
(

1

∆(λk)
− 1

∆(λk+1)

)∣∣∣∣ < ϵ

∞∑
k=n

1

λk

·
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Dividing both sides by the positive number
∑∞

k=n 1/λk (as 1/λ ∈ ℓ1 and λk > 0 for
all k); we obtain that |(1 − a) − 1/tn| < ϵ for all n ≥ k′, and since ϵ was arbitrary;
we deduce that 1/tn → 1 − a or tn → 1/(1 − a) as n → ∞, and the other limit is
immediate by (3.4). This completes the proof. 2

Lemma 3.4 Let 1/λ ∈ ℓ1 and suppose that t ∈ c. Then, all the following are true:

(1) limk→∞ tk ≥ 1 and ∆(s) ∈ c such that limk→∞ ∆(sk) ≥ 0 .

(2) If limk→∞ tk = b; then limk→∞∆(uk) = (b− 1)/b and limk→∞ ∆(sk) = b− 1.

(3) There exists a positive integer k0 such that the difference sequence (∆(λk) )
∞
k=k0

is strictly increasing to ∞.

Proof. Suppose that 1/λ ∈ ℓ1 and t ∈ c. Then, it follows by (3.4) that ∆(s) ∈ c and
so limk→∞∆(sk) = limk→∞ sk/k ≥ 0 (since sk > 0 for all k). Again, by (3.4) we get
limk→∞ tk ≥ 1. To prove (2), we first show that t ∈ c implies ∆(u) ∈ c. For this, it
follows from t ∈ c that ∆(s) ∈ c and ∆(t) ∈ c such that limk→∞∆(tk) = limk→∞ tk/k.
Thus, from (3.3), we find that ∆(sk) = ∆(tkuk) = tk∆(uk) + uk−1∆(tk) which implies
that limk→∞∆(sk) = limk→∞ tk(∆(uk) + uk−1/k ) exists. Thus (∆(uk) + uk−1/k ) ∈
c. On other side, we have limk→∞∆(sk) = limk→∞ ∆(tkuk) = limk→∞(tkuk)/k =
limk→∞ tk(uk/k). Hence (uk/k) ∈ c, and since (k/(k− 1)) ∈ c; we find that (uk−1/k) ∈
c. Therefore, we deduce that ∆(u) = (∆(uk)) = (∆(uk)+uk−1/k)−(uk−1/k) ∈ c. Now,
if limk→∞ tk = b; then by part (4) of Lemma 3.3 we get limk→∞ ∆(uk) = (b − 1)/b
and the other limit is trivial. Finally, part (3) is now immediate by (3) of Lemma 3.3
because ∆(u) ∈ c. This ends the proof. 2

Lemma 3.5 Suppose that 1/λ ∈ ℓ1. Then, we have the following equivalences:

(1) ∆(u) ∈ c if and only if t ∈ c.

(2) ∆(u) ∈ bv if and only if t ∈ bv.

(3) supn

∑n−1
k=1 |∆(tnk+1)| < ∞ if and only if ∆(u) ∈ bv.

Proof. Suppose that 1/λ ∈ ℓ1. Then, the equivalence in part (1) can be obtained
by combinig (4) of Lemma 3.3 and (2) of Lemma 3.4. To prove (2), let us first note
that bv ⊂ c. Thus, if ∆(u) ∈ bv or t ∈ bv; then ∆(u) ∈ c as well as t ∈ c. Hence,
in both direction of current equivalence, we have ∆(u) ∈ c and t ∈ c. Therefore, it
follows by (2) of Lemma 3.3 that there are δ > 0 (real) and k0 ≥ 1 (integer) such
that δ < 1 − ∆(uk) < 1 + δ for all k > k0. Thus ( 1 − ∆(uk+1) )

∞
k=k0

is a convergent
sequence of positive reals with non-zero limit, that is ( 1 − ∆(uk+1) ) ∈ c \ c0. Also,
it is obvious that t is a convergent sequence of positive reals with non-zero limit,
that is t ∈ c \ c0. Further, it follows by (4) of Lemma 3.3 and (2) of Lemma 3.4 that
limk→∞ tk(1−∆(uk+1)) = 1. Hence, if ∆(u) ∈ bv or t ∈ bv; then ( tk(1−∆(uk+1)) ) ∈ bv
and so (∆[tk(1−∆(uk+1))] ) ∈ ℓ1. Therefore, we obtain that

(∆[tk(1−∆(uk+1))] ) =
(
tk∆(1−∆(uk+1)) + (1−∆(uk))∆(tk)

)
∈ ℓ1 ·
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Now, if t ∈ bv; then ∆(t) ∈ ℓ1 and so ( (1 − ∆(uk))∆(tk) ) ∈ ℓ1 which implies that
( tk∆(1−∆(uk+1)) ) ∈ ℓ1 and hence (∆(1−∆(uk+1)) ) ∈ ℓ1 (as t ∈ c\c0) and this means
that (1−∆(uk+1)) ∈ bv and so ∆(u) ∈ bv. Similarly, if ∆(u) ∈ bv; then (1−∆(uk+1)) ∈
bv and so (∆(1−∆(uk+1)) ) ∈ ℓ1 which implies that ( tk∆(1−∆(uk+1)) ) ∈ ℓ1 and hence
( (1−∆(uk))∆(tk) ) ∈ ℓ1. Thus (∆(tk) ) ∈ ℓ1 (as (1−∆(uk)) ∈ c\ c0), that is ∆(t) ∈ ℓ1
and so t ∈ bv. Finally, to prove (3), let us first note that t ∈ c in both direction of
current equivanence (as we have already shown in proving (2) ) and hence there is an
integer k0 ≥ 1 such that (∆(λk))

∞
k=k0

is strictly increasing to ∞ by (3) of Lemma 3.4.
Now, let n ≥ 2. Then, for every k < n, we have tk+1− tnk+1 = ( tn+1/∆(λn+1) )∆(λk+1)
and so ∆(tk+1 − tnk+1) = ( tn+1/∆(λn+1) ) (∆(λk+1)−∆(λk) ). Thus, it follows that∣∣∣ |∆(tk+1)| − |∆(tnk+1)|

∣∣∣ ≤ |∆(tk+1)−∆(tnk+1)| =
tn+1

∆(λn+1)
|∆(λk+1)−∆(λk)|

and by taking the summation from k = 1 to n− 1, we get∣∣∣∣∣
n−1∑
k=1

( |∆(tk+1)| − |∆(tnk+1)| )

∣∣∣∣∣ ≤
n−1∑
k=1

∣∣∣ |∆(tk+1)| − |∆(tnk+1)|
∣∣∣ = O

( ∆(λn)

∆(λn+1)
tn+1

)
·

But ( tn+1∆(λn)/∆(λn+1) ) ∈ ℓ∞ and so
(∑n−1

k=1 |∆(tk+1)| −
∑n−1

k=1 |∆(tnk+1)|
)∞
n=2

∈ ℓ∞.
Therefore, we deduce that (

∑n−1
k=1 |∆(tnk+1)| ) ∈ ℓ∞ ⇐⇒ (

∑n−1
k=1 |∆(tk+1)| ) ∈ ℓ∞, that

is supn

∑n−1
k=1 |∆(tnk+1)| < ∞ ⇐⇒

∑∞
k=1 |∆(tk+1)| = supn

∑n−1
k=1 |∆(tk+1)| < ∞ which

can equivalently be written as supn

∑n−1
k=1 |∆(tnk+1)| < ∞ ⇐⇒ t ∈ bv. But t ∈ bv ⇐⇒

∆(u) ∈ bv by part (2) and this completes the proof. 2

Lemma 3.6 ([15, pp. 3-4]) For any infinite matrix A = [ank], we have the following:

(1) A ∈ (cs, c) if and only if the following two conditions hold:

lim
n→∞

ank exists for every k ≥ 1, (3.5)

sup
n

∞∑
k=1

|ank − an, k+1| < ∞. (3.6)

(2) A ∈ (bs, ℓ∞) if and only if both (3.6) and the following condition hold:

lim
k→∞

ank = 0 for every n ≥ 1. (3.7)

Theorem 3.7 Let u = (uk) be defined by uk = λk/(λk − λk−1) for all k ≥ 1. Then,
we have the following facts:

(1) The inclusions cs ⊂ csλ and bs ⊂ bsλ hold if and only if 1/λ ∈ ℓ1 and ∆(u) ∈ bv.

(2) The equalities csλ = cs and bsλ = bs hold if and only if u ∈ ℓ∞ and ∆(u) ∈ bv0.

(3) The inclusions cs ⊂ csλ and bs ⊂ bsλ strictly hold if and only if 1/λ ∈ ℓ1,
u /∈ ℓ∞ and ∆(u) ∈ bv.
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Proof. To prove (1), suppose that the inclusions cs ⊂ csλ and bs ⊂ bsλ hold. Then,
we have e1 ∈ cs and e1 ∈ bs, where e1 = (1, 0, 0, · · · ). Thus, we must have e1 ∈ csλ

as well as e1 ∈ bsλ. This implies that Λ̂(e1) ∈ c and Λ̂(e1) ∈ ℓ∞, respectively. Also,
by using (2.2), we find that Λ̂n(e1) = λ1 σn(1/λ) = λ1

∑n
k=1(1/λk) for all n ≥ 1. Thus,

we conclude that σ(1/λ) ∈ c and σ(1/λ) ∈ ℓ∞ and hence 1/λ ∈ cs and 1/λ ∈ bs,
respectively. Therefore, in both cases, we have obtained the same result which is
1/λ ∈ ℓ1 (see Remark 3.2). That is 1/λ ∈ ℓ1 is necessary condition for both given
inclusions (see Example 2.5). Thus, we assume that 1/λ ∈ ℓ1 and then it can easily
be seen that the inclusions cs ⊂ csλ and bs ⊂ bsλ hold if and only if Λ̂ ∈ (cs, s) and
Λ̂ ∈ (bs, ℓ∞), respectively. To see that, we have the following equivalences:
cs ⊂ csλ ⇐⇒ x ∈ csλ for all x ∈ cs ⇐⇒ Λ̂(x) ∈ c for all x ∈ cs ⇐⇒ Λ̂ ∈ (cs, c),

bs ⊂ bsλ ⇐⇒ x ∈ bsλ for all x ∈ bs ⇐⇒ Λ̂(x) ∈ ℓ∞ for all x ∈ bs ⇐⇒ Λ̂ ∈ (bs, ℓ∞).

Thus, to deduce the other necessary and sufficient conditions, we have to use the
required conditions for Λ̂ ∈ (cs, s) and Λ̂ ∈ (bs, ℓ∞) by means of Lemma 3.6 for the
matrix Λ̂ instead of A. For this, it follows from (3.1) and the definition of our matrix
Λ̂ that λ̂nk = tnk for 1 ≤ k ≤ n and λ̂nk = 0 for k > n, where n, k ≥ 1. Thus, by
using the intries of Λ̂, we deduce from condition (3.5) that limn→∞ λ̂nk = limn→∞ tnk
exists for every k ≥ 1. But these limits actually exist for all k ≥ 1 (as 1/λ ∈ ℓ1),
where limn→∞ tnk = tk = ∆(λk)

∑∞
j=k 1/λj for each k. Thus, condition (3.5) is already

satisfied for Λ̂. Also, condition (3.7) trivially holds, since Λ̂ is a triangle and so λ̂nk = 0

when k > n for each n ≥ 1 and this impliess that limk→∞ λ̂nk = 0 for every n ≥ 1.
Thus, the common condition (3.6) is left, and this condition together with 1/λ ∈ ℓ1 are
the necessary and sufficient conditions for both inclusions. Moreover, for every n, k ≥ 1
we have

λ̂nk − λ̂n,k+1 =


−∆(tnk+1 () ; k < n),

∆(λn)/λn (; k = n),

0 ; (k > n),

∞∑
k=1

∣∣∣λ̂nk − λ̂n,k+1

∣∣∣ = ∆(λn)

λn

+
n−1∑
k=1

|∆(tnk+1)|,

and since (∆(λn)/λn) ∈ ℓ∞; we deduce that supn

∑∞
k=1 |λ̂nk − λ̂n,k+1| < ∞ if and

only if supn

∑n−1
k=1 |∆(tnk+1)| < ∞. Therefore, condition (3.6) is satisfied for Λ̂ if and

only if supn

∑n−1
k=1 |∆(tnk+1)| < ∞ (or equivalently ∆(u) ∈ bv by (3) of Lemma 3.5).

Consequently, the inclusions cs ⊂ csλ and bs ⊂ bsλ hold if and only if 1/λ ∈ ℓ1 and
∆(u) ∈ bv. To prove (2), we have the equality xk − Λk−1(x) = uk [Λk(x)− Λk−1(x)]
which is satisfied for any x ∈ w and every k ≥ 1 (see [12, Lemma 4.1]). Thus, by
taking the summation of both sides from k = 1 to n ≥ 1, we get the following relation:

σn(x)− Λ̂n−1(x) =
n∑

k=1

uk [Λk(x)− Λk−1(x)] , (n ≥ 1)

which can be written as follows:

σn(x)− Λ̂n−1(x) = un+1 Λn(x)−
n∑

k=1

∆(uk+1) Λk(x) , (n ≥ 1). (3.8)
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Now, if the equalities csλ = cs and bsλ = bs hold; we deduce from (3.8) that u ∈ ℓ∞ and
∆(u) ∈ bv. But bv ⊂ c and so ∆(u) ∈ c such that limk→∞∆(uk) = limk→∞ uk/k = 0
(since u is bounded) which implies that ∆(u) ∈ bv0, where bv0 = bv ∩ c0. Conversely,
if u ∈ ℓ∞ and ∆(u) ∈ bv0; it follows from (3.8) that x ∈ csλ ⇔ x ∈ cs as well as
x ∈ bsλ ⇔ x ∈ bs, which means that both equalities csλ = cs and bsλ = bs are satisfied
(we may note that: (i) u ∈ ℓ∞ ⇒ 1/λ ∈ ℓ1, (ii) xy ∈ cs for all x ∈ cs ⇔ y ∈ bv, and
(iii) xy ∈ bs for all x ∈ bs ⇔ y ∈ bv0). Finally, part (3) follows from (1) and (2). 2

Corollary 3.8 If the inclusion cs ⊂ csλ holds; then for every sequence x ∈ cs we have
limn→∞ Λ̂n(x) = limn→∞

∑n
k=1 t

n
k xk = limn→∞

∑n
k=1 tk xk. That is

lim
n→∞

n∑
k=1

(
∆(λk)

n∑
j=k

1

λj

)
xk = lim

n→∞

n∑
k=1

(
∆(λk)

∞∑
j=k

1

λj

)
xk .

Proof. We have Λ̂n(x) =
∑n

k=1 t
n
k xk =

∑n
k=1 tk xk − (

∑∞
j=n+1 1/λj )(

∑n
k=1 ∆(λk)xk )

for all n, and since xk = σk(x) − σk−1(x); we get
∑n

k=1∆(λk)xk = ∆(λn+1)σn(x) −∑n
k=1(∆(λk+1)−∆(λk) ) σk(x). Thus, we obtain that

Λ̂n(x) =
n∑

k=1

tk xk + tn+1 ( σ̈n(x)− σn(x) ) ,

where σ̈n(x) = (1/∆(λn+1))
∑n

k=1(∆(λk+1) − ∆(λk) ) σk(x). That is σ̈(x) = Λ̈(σ(x))
and Λ̈ is the matrix Λ with the sequence (∆(λk+1)) instead of (λk), where (∆(λk+1))

∞
k=k0

is strictly increasing to ∞ (for some integer k0 ≥ 1 by Lemma 3.3). Hence, we conclude
that limn→∞ σ̈n(x) = limn→∞ σn(x) by regularity of such matrices. Therefore, our result
is now proved by going to the limits in both sides of above equality as n → ∞. 2

Corollary 3.9 The inclusion cs0 ⊂ csλ0 strictly holds if and only if there exists a
positive real number 0 < a < 1 such that ∆(uk+1) = a for all k ≥ 1 (equivalently:
cs0 ⊂ csλ0 strictly holds if and only if there exists a positive real number b > 1 such that
tk = b for all k ≥ 1). Furthermore, the equality csλ0 = cs0 cannot be held.
Proof. Assume ∆(uk+1) = a (0 < a < 1) for all k ≥ 1, i.e. (∆(u2),∆(u3), · · · ) is
constant. Then 1 + λk∆(1/∆(λk+1)) = a and so 1/∆(λk) − 1/∆(λk+1) = (1 − a)/λk.
Thus ∆(λ) is increasing to ∞ and by taking the summation from k = n to ∞ we get
tn = 1/(1−a) for all n ≥ 1 (tn is constant). In such case, it is obvious that 1/λ ∈ ℓ1 and
∆(u) ∈ bv. Thus, it follows by (1) of Theorem 3.7 that the inclusion cs ⊂ csλ holds.
Also, for any x ∈ cs0, we have x ∈ csλ (since cs0 ⊂ cs ⊂ csλ). Thus, we deduce from
Corollary 3.8 that limn→∞ Λ̂n(x) = ( 1/(1 − a) ) limn→∞ σn(x) = 0 which means that
x ∈ csλ0 . Hence, the inclusion cs0 ⊂ csλ0 holds. Conversely, if the inclusion cs0 ⊂ csλ0
holds; then for each k ≥ 1, we have limn→∞ Λ̂n(êk) = 0, where êk = ek − ek+1 ∈ cs0
for all k. But limn→∞ Λ̂n(êk) = −∆(tk+1) and so ∆(tk+1) = 0 for all k ≥ 1. Thus,
there exists a positive real b > 1 such that tk = b for all k ≥ 1 (as t1 > 1). Hence
tk/∆(λk)− tk+1/∆(λk+1) = b/∆(λk)−b/∆(λk+1) and so 1−1/b = 1+λk∆(1/∆(λk+1))
which yields ∆(uk+1) = (b − 1)/b for all k ≥ 1 and 0 < (b − 1)/b < 1. Further, if the
inclusion cs0 ⊂ csλ0 holds; then it must be strict, since the equality can only be held if
a = 0 (see (2) of Theorem 3.7) which is impossible (as ∆(u2) ̸= 0). 2

At the end of this section, we give a general example to support our main results.
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Example 3.10 For each non-negative integer m ≥ 0, we will define other spaces
csλ0(m), csλ(m) and bsλ(m) (as particular cases of our spaces) such that the inclusions
cs0 ⊂ csλ0(m), cs ⊂ csλ(m) and bs ⊂ bsλ(m) strictly hold by Corollary 3.9. That is, it
will be there an infinitely many number of the spaces according to m. For this, define
the sequence λ(m) = (λk) by λk = k(k + 1) · · · (k +m+ 1) = (k +m+ 1)!/(k − 1)! for
all k ≥ 1. Then, it can easily be deriving the following (k, n ≥ 1):

∆(λk) = (m+ 2) [(k +m)!/(k − 1)!]

uk = (k +m+ 1)/(m+ 2) , ∆(uk) = 1/(m+ 2) (constant)

1

λj

=
1

j(j + 1) · · · (j +m+ 1)
=

1

(m+ 1)!

m∑
i=0

(−1)i
(m
i

)[ 1

j + i
− 1

j + i+ 1

]
n∑

j=k

1

λj

=
1

(m+ 1)!

m∑
i=0

(−1)i
(
m
i

)[ 1

k + i
− 1

n+ i+ 1

]
=

1

m+ 1

[
(k − 1)!

(k +m)!
− n!

(n+m+ 1)!

]

tnk = ∆(λk)
n∑

j=k

1

λj

=
m+ 2

m+ 1

[
1−

(k +m
k − 1

)/(n+m+ 1
n

)]

tk = ∆(λk)
∞∑
j=k

1

λj

=
m+ 2

m+ 1
(constant)

Λ̂n(x) =
m+ 2

m+ 1

[
σn(x)−

n∑
k=1

xk

(k +m
k − 1

)/(n+m+ 1
n

)]

Λ̂n(x) =
m+ 2

m+ 1

n∑
k=1

σk(x)
(k +m

k

)/(n+m+ 1
n

)
.

Further, from the equality tk = (m+2)/(m+1); we deduce the following new or known
formulae for summation (m ≥ 0 and k ≥ 1):

∞∑
n=k

m+ 1

n(n+ 1) · · · (n+m+ 1)
=

1

k(k + 1) · · · (k +m)

∞∑
n=k

1

n(n+ 1) · · · (n+m+ 1)
=

1

(m+ 1)!

m∑
i=0

(−1)i
(m
i

)/
(k + i)

m∑
i=0

(−1)i
(m
i

)/
(k + i) =

m!

k(k + 1) · · · (k +m)

∞∑
n=k

(k +m
k − 1

)/(n+m+ 1
n− 1

)
=

m+ 2

m+ 1
·

On other side, we must note that the condition 0 < a < 1 (or b > 1) is necessary in
Corollary 3.9 (see Example 2.5 for the case a = 1). Also, if λk = αk (α > 1); then
∆(u2) ̸= 0 while ∆(uk) = 0 for k > 2 and t1 ̸= 1 while tk = 1 for k > 1.
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4 Schauder bases for the spaces csλ0 and csλ

In the last section, we construct the Schauder bases for the λ-sequence spaces csλ0 and
csλ, and we conclude their separability.

If a normed space X contains a sequence (bk)∞k=1 with the property that for every x ∈ X
there is a unique sequence (αk)

∞
k=1 of scalars such that

lim
n→∞

∥x− (α1b1 + α2b2 + · · ·+ αnbn)∥ = 0 ;

then the sequence (bk)
∞
k=1 is called a Schauder basis for X (or simply a basis for X)

and the series
∑∞

k=1 αkbk which has the sum x is then called the expansion of x, with
respect to the given basis, which can be written as x =

∑∞
k=1 αkbk, and we then say

that x has been uniquely represented in that form. For example, the two sequences
(e1, e2, e3, · · ·) and (e, e1, e2, e3, · · · ) are the Schauder bases for the sequence spaces c0
and c, where e = (1, 1, 1, · · · ) and ek = (δnk)

∞
n=1 for each k ≥ 1 [8].

Theorem 4.1 For each k ≥ 1, define the sequence eλk = (eλnk)
∞
n=1 for every n ≥ 1 by

eλnk =



λk

λk − λk−1

; (n = k),

−
(
λk+1 + λk

λk+1 − λk

)
; (n = k + 1),

λk+1

λk+2 − λk+1

; (n = k + 2),

0 ; (otherwise).

Then, the sequence
(
eλk
)∞
k=1

is a Schauder basis for the space csλ0 and every x ∈ csλ0 has
a unique representation of the following form:

x =
∞∑
k=1

Λ̂k(x) e
λ
k . (4.1)

Proof. For each k ≥ 1, it can easily be seen that

eλk =
λk

λk − λk−1

ek −
(
λk+1 + λk

λk+1 − λk

)
ek+1 +

λk+1

λk+2 − λk+1

ek+2 ·

Thus, by using (2.1), we find that Λ(eλk) = ek − ek+1 and so Λ̂(eλk) = ek. This implies
that Λ̂(eλk) ∈ c0 and hence eλk ∈ csλ0 for all k ≥ 1 which means that

(
eλk
)∞
k=1

is a sequence
in csλ0 . Further, let x ∈ csλ0 be given and for every positive integer m, we put

x(m) =
m∑
k=1

Λ̂k(x) e
λ
k .

Then, by operating Λ̂ on both sides, we find that

Λ̂(x(m)) =
m∑
k=1

Λ̂k(x) Λ̂(e
λ
k) =

m∑
k=1

Λ̂k(x) ek
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and hence

Λ̂n(x− x(m)) =

 0 ; (1 ≤ n ≤ m),

Λ̂n(x () ; n > m).

Now, since Λ̂(x) ∈ c0; for any positive real ϵ > 0, there is a positive integer m0 such
that |Λ̂m(x)| < ϵ for every m ≥ m0. Thus, for any m ≥ m0, we have∥∥x− x(m)

∥∥
λ
= sup

n>m
|Λ̂n(x)| ≤ sup

n>m0

|Λ̂n(x)| ≤ ϵ .

We therefore deduce that limm→∞ ∥x− x(m)∥λ = 0 which means that x is represented
as in (4.1). Thus, it is remaining to show the uniqueness of the representation (4.1) of
x. For this, suppose that x =

∑∞
k=1 αk e

λ
k . Then, we have to show that αn = Λ̂n(x) for

all n, which is immediate by operating Λ̂n on both sides of (4.1) for each n ≥ 1, where
the continuity of Λ̂ (as we have seen in Remark 2.4) allows us to obtain that

Λ̂n(x) =
∞∑
k=1

αk Λ̂n(e
λ
k) =

∞∑
k=1

αk δnk = αn

for all n ≥ 1 and hence the representation (4.1) of x is unique, and this step completes
the proof. 2

Theorem 4.2 The sequence
(
eλ, eλ1 , e

λ
2 , · · ·

)
is a Schauder basis for the space csλ and

every x ∈ csλ has a unique representation in the following form:

x = Leλ +
∞∑
k=1

(
Λ̂k(x)− L

)
eλk , (4.2)

where L = limn→∞ Λ̂n(x), the sequence
(
eλk
)∞
k=1

is as in Theorem 4.1 and eλ is the
following sequence:

eλ = e1 −
(

λ1

λ2 − λ1

)
e2 =

(
1,− λ1

λ2 − λ1

, 0, 0, 0, · · ·
)
.

Proof. It can easily shown that Λ(eλ) = e1 and so Λ̂(eλ) = e ∈ c which means
eλ ∈ csλ. This together with eλk ∈ csλ0 ⊂ csλ imply that

(
eλ, eλ1 , e

λ
2 , · · ·

)
is a sequence

in csλ. Also, let x ∈ csλ be given. Then Λ̂(x) ∈ c which yields the convergence of the
sequence Λ̂(x) to a unique limit, say L = limn→∞ Λ̂n(x). Thus, by taking y = x−Leλ,
we get Λ̂(y) = Λ̂(x)− Le ∈ c0 and so y ∈ csλ0 . Hence, it follows by Theorem 4.1 that
y can be uniquely represented in the following form:

y =
∞∑
k=1

Λ̂k(y) e
λ
k =

∞∑
k=1

(
Λ̂k(x)− L Λ̂k(e

λ)
)
eλk =

∞∑
k=1

(
Λ̂k(x)− L

)
eλk .

Consequently, our x can also be uniquely written as

x = Leλ + y = Leλ +
∞∑
k=1

(
Λ̂k(x)− L

)
eλk

which proves the unique representation (4.2) of x. 2
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Corollary 4.3 We have the following facts:

(1) The spaces csλ0 and csλ are separable BK-spaces.

(2) The space bsλ is a non-separable BK-space and has no a Schauder basis.

Remark 4.4 We end our work by expressing from now on that the aim of our next
paper is to determining the duals of our λ-sequence spaces bsλ, csλ and csλ0 , and
characterizing some matrix operators between them.
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