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N Abstract )
The A-sequence spaceso. ¢ ands have already been studied by Mursaleen and Noman. Next, they
have also studied the difference A-sequence spaces < (A). ¢ (Dand oo (A)by using the usual
manner of difference spaces of sequences. In present paper, we will go away to use another manner
in order to introduce the new A-difference spacesc (3*) » ¢ (A%) apdto (AY), and then we will study
their properties, bases and inclusion relations. Further, we will show that our new spaces are
Banach spaces isometrically isomorphic to the related classical sequence spaces c0,c and "co.
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Introduction
We will write w for the linear space of all real Also, any term with non -positive

or complex sequences. A sequence x € w will subscript is equal to naught, i.e. X0 = 0 and
be simply written as x = (xk) instead of  x—1=0. Any linear subspace of w is called a
& = (2x)5_1. Also, we will use the conventions sequence space, and we will write ¢..,c and
e=(1,1,1,..)and ¢ = (dux)uzs foreachk > 1,  cO for the classical sequence spaces of
that is ek is the sequence with zero terms bounded, convergent and null sequences,
except the k-term only which is 1 respectively. Further, we will write

loo (A), c(A)and ¢ (A) for the usual difference spaces, e.g. loo (A) ={x € w: (xr Tr_1) € loo}.
A sequence space X together with a norm ||-|| is called a normed sequence space, and a complete
normed sequence space is called a Banach sequence space. By a BK-space, we mean a Banach
sequence space with continuous coordinates. An infinite matrix A whose real or complex entries a,,,
for all n,k > 1 will be written as A = [a,] instead of A = [a,] fk:l. The act of A on a sequence
z € w is called the A-transform of z, and is defined to be the sequence A (x) = (A, (z)),—,, where

An(2) = ane ar;  (n21),
k=1

provided the series on the right hand side Cbnverges for each n, and we then say that A (z) exists or
is well-defined. For two sequence spaces X and Y, we say that an infinite matrix A defines a matrix
operator form X to Y, which is a linear operator, and we denote it by A: X — Y, if A acts form X
to Y, i.e, if for every sequence x € X; the A-transform of x exists and is in Y. Moreover, we will write
(X,Y) for the class of all infinite matrices that map X into Y, i.e, A € (X,Y) if and only if A(z) is
well-defined and A (z) € Y for every x € X.

For an infinite matrix A and a sequence space X, the matrix domain of A in X is denoted by X 4
which is a sequence space defined as X4 = {zr € w: A(z) € X}. An infinite matrix A is called a
triangle if anr = 0 for all k > n and ay, # 0 for all n, where n,k > 1. If X is a BK-space with its
norm ||-|| and A is a triangle, then the matrix domain X4 is also a BK-space with the norm ||-||4
defined by ||z]|a =||A(x)|| for all x € X4. We will write A for the band matrix of difference, that is
A(z) = (xy — xn,l)flozl = (z1,22 — Z1,T3 — T2, - - ) which means that A(xy) = xr — 2,1 for all k.
So that, the difference sequence space co(A), c(A) and fo (A) can be defined as the matrix domains
of A in ¢, c and s, respectively. That is cp(A) = (co)a, ¢(A) = (c)a, and o (A) = (loc)a. It is
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well-known that cg, ¢ and ¢, are BK-spaces with the norm ||| defined by ||z||cc = sup,,|2x|, where
the supremum is taking over all positive integers n. This yields that the difference spaces ¢o(A), ¢(A)
and /o, (A) are BK-spaces with the norm ||-||a defined by ||z|a = sup,, |z, — Tn—1].

The idea of constructing a new difference sequence space by means of the matrix domain of a partic-
ular triangle has largely been used by several authors, they specially introduce many new difference
sequence spaces in different ways. For instance, see [1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15, 17] and [19].

2 The new )-difference sequence spaces

In this section, we will introduce the new \-difference sequence spaces co(A*), c(A*) and £, (A*Y).
Throughout this paper, we assume that A = ()\k)gil is a strictly increasing sequence of positive reals,
that is 0 < A\; < Ag < ---. Then, for any = € w; we define the sequence A (z) = (A,, (x)),—, by

1 n

An ((,E) = )\7 Z ()\]c — )\kfl) Tk (n Z 1) . (21)

" k=1

In [10] and [12], the A- sequence spaces have been introduced by Mursaleen and Noman as follows:
g={rew:Az)€c}, F={zew:A@) ect and O ={rcw: Ax)€Els}.

Also, the difference A-sequence spaces ¢ (A), ¢* (A) and £2, (A) have been studied in [11] as follows:
cy (A) = (cS)A, A (A) = (c’\)A and £ (A) = (éé‘o)A.

Now, we will go away from the technique used in [11] and introduce the A-difference sequence spaces,
which is our contribution in this paper, as follows:

co (AY) ={z e w: Az) € o(A)},
c(AY) ={zecw:Ax) € c(A)},
loo (AY) = {z € w: A(z) € (D)}

Besides, we define the triangle A = [A,;] for all n,k > 1 by

J\"_/\i:”*l ; (n = k),
Ak = 4" = A1) (Al - An1_1> ;o (n>k),
03 (n < k).
Then, for any sequence = € w, it can be easily shown that
Ra(®) = Aula) = A1 (@) (n>1)
and so A(z) = (Ap(z) — Ap_1(z) )?:1; Thus, the spaces co(A*), c(A*) and £ (AY) can be defined

as the matrix domains of the triangle A in the spaces ¢y, ¢ and /., respectively. That is
o (A’\) =(co)i, ¢ (A”\) =(c); and { (A)‘) = (lso)i (2.2)
which means that

Co (AA) = {x Ew: lim An(x) = O},

n—oo

c(AY) = {a: cw: lim A,(z) exists} ,

n—oo

loo (AN) = {a: €w: sup ‘f\n(x)’ < oo}.

It follows that our spaces are sequence spaces of difference type, and we can prove the following results:
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Lemma 2.1 The A-difference sequence spaces cq (A’\), c(AA) and fs (AA) are BK -spaces with
the norm ||-||x defined by

Izl = 1A (@)l = Sgplﬁn(w)lz sup | An(z) = Ana (@) [

Proof. Since ¢y, ¢ and £, are BK-spaces with respect to their natural norm (see [7]) and the matrix
A is a triangle; from (2.2) we deduce the fact that cy(A?Y), ¢(A*) and £ (AY) are BK-spaces with
the given norm which is obtained by the famous result of Wilansky [18]. m|

Theorem 2.2 The A\-difference sequence spaces cg (AA) , C (A/\) and fo (A/\) are isometrically linear-
isomorphic to the spaces ¢y, ¢ and ls, respectively. That is

co (AA) Zcy, c (A)‘) ¢ and fo (AA) ~ .

Proof. To show that co(A*) 22 ¢y, we will prove the existence of a linear operator between cy(A*) and
co which is bijective and norm-preserving. For, we define the mapping A : ¢o(A*) — ¢o by = +— A(x)
for all € co(A*). Then, this mapping is clearly a linear operator which is well-defined. Also, it is
easy to see that ]\(x) = 0 implies = 0 which means that A is injective. Further, to show that A is
surjective, let y € ¢o and define the sequence x = (zy) by

k k—1
1
= —F (A i — Ak i | s k>1),
. AMH(kzy zy> (k> 1)

i=1

where 1 = y; (since A\g = 0). Then, for every n > 1, we have

n k k—1 n
Ay (z) = )\i (M = Ap—1)wn = )\i > <>"€ D vi— Ak Zy”) =D
n i=1 i=1 i=1

which implies that A, (z) = A, (z) — Ap_1(2) = S0y — S0 yi = yn for every n > 1 and this
means A(z) =y € ¢ and so & € ¢o(A*) such that A(z) = y. This shows that A is surjective and hence
A is a linear isomorphism. Finally, for any = € ¢o(A*), we have by Lemma 2.1 that ||z||, = |A(z)]

which means that A is norm-preserving, and so A is a linear bijection which preserves the norm.
Hence, we deduce that co(A*) 2 ¢g. Similarly, we can show that ¢ (AA) ¢ and fo (A’\) >/ O

Corollary 2.3 The A-difference sequence spaces cg (A’\), c(AA) and lso (AA) are isometrically
linear-isomorphic to the spaces co(A), ¢(A) and Lo (A), respectively. That is

co (A 2 p(A), c(AY) 2e(A)  and Lo (AY) 2 L(A).

Remark 2.4 The matrix operator A defined on any of the spaces cg (A)‘) , C (A’\) or fo (A/\) into
the corresponding space of cg, ¢ or £ (respectively) is an isometry linear isomorphism as we have
already shown in the proof of Theorem 2.2, and this implies the continuity of the matrix operator A.

At the end of this section, we give an example to show that our new A-difference spaces of sequences
are totally different from the classical sequence spaces and from the well-known A-sequence spaces.
For simplicity in notations, we will use the symbole 1 to denote any of the spaces ¢, ¢ or £, and so
w(A*) is the respective one of the spaces co(A%), ¢(A*) or Lo (AY).

Example 2.5 In this example, our aim is to show that the space u(A*) is different from all the
sequence spaces i, p(A), p* and p*(A). For this, consider the sequence A\ = (\;) defined by \x =
(2% —1)/2* for all k > 1 which is a strictly increasing sequence of positive reals. Then A(\;) = 1/2%+~1
(k > 1) and for any sequence z € w we have A, (z) = A,(z) — A, () for all n > 1, where

2" - Tk
An(iﬂ) - on _ 1 Z 92k—1 ) (Tl z 1)

k=1
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Now, consider the unbounded sequence = = (z,) given by x;, = 2%*~'(vk — vk — 1) for all k& > 1.
Then, it can easily be show that A, (z) = v/n(1+1/(2" — 1)) for all n, and so we obtain that

Rule) = Vi - VT4 g - L s

which shows that A(z) € co. Thus z € co(A*) and hence z € p(A*) ( since ¢o(AY) C ¢(A) C
L5 (AM)). On other side, it is clear that = & £, and so x € p. Thus, we have 2 € u(A*) while z ¢ p.
Consequently, it follows that u(A*) # p. Also, we note that A(x) & £o, and hence x ¢ 2 which means
that ¢ u* and so u(A*) # p?. Further, for every k > 1, we have Vk + vk — 1> (VE+ 1 +Vk)/2
and hence vk — vk — 1 < 2(vVE +1—+k). Thus, it follows that A(zg,,) > 22*(vVE + 1 —Vk ) which
implies that A(zy) > xr/2 — oo (as k — o0) and so A, (A(z)) > Ay (x)/2 — oo (as n — c0). Hence,
we deduce that z & £ (A) as well as x ¢ 2 (A) and so = & u(A) as well as x & u*(A), which means
that p(A*) # u(A) and p(A*) # p*(A). Therefore, the space u(A™) is different from all the sequence

spaces j1, i(A), p* and pr(A).

3 Some inclusion relations

In this section, we derive some interesting inclusion relations between our new A-difference sequence
spaces and the classical sequence spaces (specially, the difference types co(A), ¢(A) and £ (A)).

Lemma 3.1 The inclusions cg (A’\) Cece (AA) C le (A)‘) strictly hold.

Proof. These inclusions are immediate from the inclusions ¢y C ¢ C f+,. To show that these inclusions
are strictly, we consider the two sequences x and y defined by

ke — (k= 1) Ap_1 (-1)F ()\k + )\kl)
, _ k>1).
Ak — A1 Yk 2 Ak — A1 ( )

X =

Then, for any n > 1, it can be easily seen that

Mule) = 5= S e~ (k= D) =, Auly) = 5 DD+ ) = 2
" k=1 " k=1
and so A, (z) = A, (z) — Ay 1(z) = 1 and A (y) = A (y) — A1 (y) = (=1)" which imply
that A, (z) = e € c\cp and A, (y) € fLoo\c which maen that x 6 c(AM\¢o (AY) and y €
Lo ( )\ ( ) This completes the proof. a

Lemma 3.2 The inclusion ¢* C ¢ (A/\) strictly holds.

Proof. For any z € ¢, we have A (z) € ¢ and so A () = (A, (z) — Au_1 ()) € ¢o which means
that z € ¢ (A*) and hence ¢* C ¢ (A%). Also, to show that this inclusion is strict, define the

sequence © = (z3) by 21 = (MVE — M_1vVk — 1 )/ Ak = Ag—1) for k > 1. Then A, (z) = /n
and so A (z) = (y/n) ¢ ¢ which means z ¢ ¢*, but A(z) = (/n—+/n—1) € ¢y which shows that
T € ¢y (A’\)\CA. O

Corollary 3.3 The spaces co, ¢ and ¢} are strictly included in co (A)‘).
Corollary 3.4 The inclusions ¢y C co (A%) , * C ¢ (A*) and £, C lo (A*) strictly hold.
Remark 3.5 The spaces (o and ¢ (A*) overlap, but fo cannot include ¢y (A*). To see that, we

have ¢ C foN co (A’\), and the sequence x in the proof of Lemma 3.2 is unbounded, since z; > Vk
for all £ > 1, which means that z € ¢ (AA)\KOO

Albaydha University Journal 3 (2), 2021



(sl daalad (GG alad) jaligall Silasl pald s3e) 2021 ubaud (2)8) — (3)dlaall — slianl) Azals Alaa

Theorem 3.6 The inclusion {o, C cg (AA) strictly holds if and only if lim, oo Ap—1/ An = 1.

Proof. It is clear that £ C cg (A’\) if and only if Ae (s, co) which is equivalent to the condition
limy, 00 > py [Ank| = 0 [16]. On other hand, for any n > 1, we have

e — )\ — A A — Ap—1 An—1
)\ — A =2 ——— | =2(1—- .
P < )Z A < Ao ) ( An>

Thus, we find that lim,, o Y 5oy |5\nk| = 0 if and only if lim, oo An—1/A, = 1. This proves that
U C co (A*) if and only if lim, e An—1/An = 1. Also, this inclusion is strict because the equality
cannot be satisfied by Remark 3.5. O

Now, in the following results, we will discuss the inclusions ¢ (A) C ¢o (AY), ¢(A) C ¢(A*) and
loo (A) C Lo (A*), and for this we need the following Lemmas:

Lemma 3.7 For any sequence x € w, we have

. 1 1) <
A, (z) = <An1 - An) kZ:QA,H A (xp) (n>2). (3.1)
Proof. Let x € w. Then, for any n > 2, we have
B = M)~ At () = 3 A e S A
n\T) = An (T n—1\T) = \, — k k—1)Tk N1 2 k k—1

and so we find that

Remark 3.8 The two sequences (k)72 , and (Ax/(Ap — Ax—1) )32, will be used, and we have the
following equalities:

Ak Ak—1
1) — 2k gy Akl k>1),
( ) )\k — )\k—l )\k - )\kfl ( )
Ak

(2)A<__1>:A()\_k1_1) (k>2),
(3) A, (A;_?'il) _i, E;A_A'cizl) n>2),
R ;)kzm (n>2),
RR e R i P e ) B

—~
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Lemma 3.9 We have the following:

(1) A, (k-)+/~\n()"“1 —1 (n>1),

)\M-M-1 s

k—1 kA\k—1

_— < _— >

(2) )\k—lA(i\k_)\kl) _A<)\k_)\k1) (k>2),
3) |A, i <1 -, n>1),
(3) ‘ </\k_)\lc—1 < ( )
4) 0< A, (k) <2 (n>1)

Proof. For(1), we have

< < Ak—1 < Ak—1 ~ kA= (B—1) Ay
Ank+An(>—An<k+)—An< 4
(k) Ak — Ak—1 Ak — A1 Ak — A1

as we have seen in Lemma 3.1. For (2), it is obvious, for any k > 2, that

AkAk—1 ) ( Ak Ak—2 ) { < Ak—1 ﬂ
Al —————— ) = \,_ — =g [1+A | ————
()\k — Ak—1 A D VD VIR VP VIS bt Ak — =1

and we have done by noting that

>\k71 >:| ( )\kil >
M1 [1+HA | ————— )| 2 A1 A | — .
= |: ()‘k - Ak—l =t Ak — )\k—l

To prove (3), we use (5) of Remark 3.8. Then, for any n > 2, we have

~ Ae—1 1 1
A, | ———— = N
" ()\k/\k—l) ’ (An—l >\n>

IN
N
>

I -
L

|
=
N———

AkAk—1 )
A DkARZL
Z ( Ak — Ak—1 ‘

I
7N
>
:}—‘
L

|

>
:"—‘
N~~~
S
>~
S | >
BE
>
|3
3 ||
||—‘
—
~_

Finally, for (4) we find form (4) of Remark 3.8 that A,, (k) > 0 and so the result follows by (3), where

An(k):An(k:)‘:’l—An<>\k/Y€;;l)’§1+ AH<MA_’“;H)‘ o
Now, lets define the triangle A as follows:
1 0 0
oou(E-w) o
o) R

Then, it follows by Lemma 3.7 that A,, (z) = A,, (Az) for all n > 1 and so A, (z) = A (Az) for every
x € w. Also, it is clear that

. . 1 1
f o= e i (5 50) =0 629
EOO lank| = Eoo (nk = L1 En Ak—1 (n>2).
)\n—l )\n B
k=1 k=1 k=2
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Thus, we have lim,_,o anr, = 0 for each k > 1 and Y 7o |ank| = D peq @nk = A, (k) foralln > 1.
Hence, by combining these facts with the results of [16] that

A€ (loo, los) & A€ (co, o) & sup A, (k) < oo & A, (k)€ ly, (3.2)
A€ (c,c) & le A, (k) exists < A,(k)ec. (3.3)

Theorem 3.10 We have the following:
(1) The inclusions co (A) C co (AY) and log (A) C U (AY)  always hold.
(2) The inclusion c(A) C ¢ (A*) holds if and only if A/ = A1) € c.
(3) 1limy, o0 Ay () = limy, 00 A(,) for every z € ¢(A) if and only if A(Xe/( Mk — Me1)) € co.

Proof. For(1), we have & € ¢o (A) if and only if Az € co.. Thus, we obtain from the fact A (z) =
A (Az) for all x € w that:

co (A) Ceo (AN & A(z) € ¢ YV x € co(A)
< A(Ax) € ¢ vV A(z) € ¢
< Ay) €co Yy € co
S A e (CQ, Co).

Similarly, we can show that { (A) C ls (AY) & A€ (o, lo). Thus, it follows from (3.2) that
co(A) C oo (AY) & U (A) C lo (AY) & Ay (K) € Lo

But the condition A (k) € (. is always satisfied by (4) of Lemma 3.9. Therefore, the inclusions
co(A) Cco(A*) and foo(A) C Loo(AN) always hold.

To prove (2), we can use the same technique to show that ¢ (A) C ¢(AY) & A€ (¢, ¢) & A(k) €c
which can be obtained with help of (3.3). Thus, by using (1) of Lemma 3.9, we deduce the equivalence
c(A) Ce(A) & A(M/(MAk—Ak—1)) € c. Finally, to prove (3), let = € ¢(A) with A(zy) — L as
k — co. Then (x — Lk) € ¢o(A) C co(A*). Also, since A, (z) = A, (x — Lk) + LA, (k) ; we find by
passing to the limits when n — oo that

lim Ap(z) =L lim A,(k)=L—L lim A, (A’“>

n—00 n—00 n—00 )\k — /\k—l

Thus, the regular case lim, o0 Ap(z) = lim, 00 A(x,) holds for every z € ¢(A) if and only if

]\()\k/())k — Mi—1)) € co, or equivalently lim,, . A, (k) = 1 (note that: (Ag/(Ax — Ak—1)) € co(A)
implies A ( A/ (Ar — Ak—1)) € ¢o but not the converse). O

Remark 3.11 We may note, by Theorem 3.10 and its proof, that the inclusion ¢ (A) C ¢ (AA) implies
both inclusions ¢g (A) C ¢o (A*) and lo (A) C Lo (AY), and the inclusion ¢ (A) C ¢ (A*) holds if
and only if A (k) € ¢, and this condition can be written by (4) of Remark 3.8 as follows:

. )\n - /\n—l - .
nh_)l’I;o ()\n)\n_1> kZ_ZAk71 exists.

Similarly, by using the same idea, we can show that the inclusion ¢ (A’\) C ¢ (A) holds if and only
if the inclusion £, (A/\) C Lo (A) holds, and the inclusion ¢ (A’\) C ¢(A) implies both inclusions
co (AY) Cco(A) and Lo (A*) C oo (A), and these inclusions cannot be strict.

Now, for any sequence x € w, we have the following equality (see [12, Lemma 4.1])

Alz,) — Ay (z) = A <)\n>\_n;\;1 ]\n(az)> (n>2).

Albaydha University Journal 3 (2), 2021
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Also, by using (2.1) and (3.1), we find for any n > 2 that

Ae—1 1 ¢ 1 ¢ A1z
Ay —————A = — Ak—14A = — Ak—14A = A,
(o) Ry 2 A ) =0 de ) = TR )

and by operating A on both sides and combining the last two equations, we deduce the following
equalities for any x € w:

Ao =Rl = A (25 R)) = A (( 255 800) Wz G

Theorem 3.12 We have the following:
(1) The equalities co (A*) = ¢ (A) and (s (A) =l (A) hold if and only if (Ae/(Ax — Ae—1)) €

oo -

(2) The equality c (A*) = ¢ (A) holds if and only if (Ai/(Ak — Ak—1)) € loc Nco(A) .

Proof. For (1), if (Ax/(Ax — Ak—1)) € loo and so (Ag—1/(Ax — Ak—1)) € foo by (1) of Remark 3.8; then
from (3.4) we find that o € co(A) & x € co(A), as well as ¥ € £ (A) & x € £o(AY), and hence
the two equalities in (1) hold. Conversely, if fo(A) = fo(A), or equivalently co(A*) = co(A);
then it follows from the proof of Lemma 3.1 that y € o, (A*) and so y € s (A) , where

(=1 [ M+ M
2 Ak — Ak—1

Yk = (k>1).

Thus, we have Ay € {,. But, for any k£ > 2 we also have

A(e)| = % ()\kJr)\k_l Ak—1 +)\k_2> S 1 ()\k+)\k_1> < Ak—1

Me =M1 M1 —Mea) T2\ =M1/ T M — e

which implies that (/\k—l/(/\k - /\k—l)) € f and so ()\k/(/\k — )\k—l)) €l

To prove (2), suppose that (Ag/(Ax — Ak—1)) € Lo N co(A) or equivalently (Arp—1/(Ax — Ap—1)) €
loo Nco(A). Then, it follows from (3.4) that = € ¢ (A*) < z € ¢(A), because of lim, Ay (z) =
lim,, oo A(2,,) for every z in ¢(A*) or in ¢(A). To see that, we have

)\nfl X o )\n,1 ~ ~ )\nfl
A ()\n_)\n_l An(:E)) BV A(Ap(z)) +Ap1(z) A <)\n — )\n_l) — 0 as n — oo,
A (55 A @) = 25 MAE) + Ma) A (25 ) 0 s ko
Ak — Ak—1 Mo — A1 M — Aot

Conversely, suppose that ¢ (AA) = ¢(A). Then, we must have £ (A)‘) = lx (A) and therefore
(Ae/ (M — Ak—1)) € foo. Also, in the proof of Lemma 3.1, we have = € ¢(A*) and so = € ¢(A), where
Ak—1

=k+ — kE>1
T +/\k—>\k—1 (k=1)

such that limg_ 0o A(zr) = limgeo Ak(x) = 1. But A(zg) = 1+ A(Xe—1/(Ax — Ag—1) for all
k, which implies that limg_00 A (Ag—1/(Ax — Ag—1) = 0 and so limg_yo0 A (Ag/(Ax — Ag—1) = 0
by (2) of Remark 3.8. Thus, we deduce that (Ag/(Ax — Agk—1) € co (A). Finally, we have already
shown that (Ag/(Ax — Ak—1)) € £ as well as (Ap/(Ax — Ak—1) € co (A), which together imply that
( A/ (A — Ak—1) € oo Nco(A) and this completes the proof. |

Corollary 3.13 We have the following:
(1) If (Ak/(A\k = Ae—1)) € c; then the equality c (AY) = c(A) holds.
(2) If A(k) € co; then all the spaces co (A),c(A) and o (A) are strictly included in co (A%).

Albaydha University Journal 3 (2), 2021



(sl daalad (BN alal) jaligall Silasly gald ) 2021 ubaud (2)8a) — (3)dlaall — slianl) Azals Alaa

Proof. (1) is immediate by (2) of Theorem 3.12. To prove (2), let € £ (A). Then, there exists
M > 0 such that |A (x)| < M for all k£ and so we obtain by (4) of Remark 3.8 that

- 1 1) « 1 1) « .
< _ § < [ < .
An (LC)‘ o (/\n—l /\n> k=2 )\kil |A (xk)‘ n M <An—1 An) k=2 )\kil N MA” (k)

Thus, we get 0 < |1~\n (z)| < M A, (k) for all n. Consequently, the result follows by going to the
limits when n — oo. d

At the end of this section, we give some examples of the distinct cases of above results concerning the
inclusions p(A) C u(A*), where p denotes any of the spaces g, ¢ or £o. For simplicity in notations,
we will use the symbole u = A\/AM\, that is ug = Ap/(Ax — Ag—1) for & > 1.

Example 3.14 The cases of strict inclusions: for ¢g(A) S co(A*) and oo (A) S Lo (A*); it is enough
that u & (s, but for ¢(A)  ¢(A*) we must have u & (o and A(u) € ¢. The last case holds when
A(u) = oo or A(u) € ¢ with u & £o. Thus, we have the following two cases:

" I-When A(u) € cand u & £o: consider the sequence A = (\,) defined by A, = (n + 1)%, where
a >0 (n>1). Then, we have u,, — 00, A(u,) — 1/a, A, (u) = 1/(1+a) and A, (k) = a/(1 + a).

~  II - When A(u) — oo: it is the strong case of strict inclusions as proved in Corollary 3.13. For
example, consider the sequence A = (\,) given in Example 2.5 or the sequence A, = In(1 + n) for
n > 1. Then, we have u, — 00, A(u,) = 00, Ap(u) — 1 and A, (k) — 0 (the main property of this
case is 1/\ & ¢, for every p > 0).

~ In these two previous cases of this example, it is obvious that:

Example 3.15 The cases of identities: for co(A*) = co(A) and foo(A*) = lo(A); it is enough
that u € £, but for ¢(A*) = ¢(A) we must have u € £ Nco(A). In the first case, the equality
c(A*) = ¢(A) may fails as will be shown in the next example. Here, we will consider the the second
case (the strong case of regularity). For example, let A = (\,,) be defined by A\,, = (n+1)! or A, = a™,
where a > 1 (n > 1). In such case, we must have u € loo, A(uy,) — 0, A, (u) — 0 and A, (k) — 1.

Example 3.16 The case of non-inclusion between c¢(A) and ¢(A*): that is ¢(A) ¢ ¢(A*) and ¢(A*) ¢
¢(A). In this case, we must have A(u) & ¢ which means that the sequence A(u) is oscillated (it has
no unique limit). The main property of this case is not only that A(u) & ¢ (e.g. A(u) — oo is not
the case) but the limit of A(u) does not exist and it must be oscillated between at least two values
(it maybe oscillated through +o00). Here also, there are two distinct cases:

~ I- When u € /o and so it must be oscillated (in this case, the equalities co(A*) = co(A) and
loo(AN) = £ (A) are satisfied): For example, consider the sequence A = (a, ab, a?b, a?b?,- - -), where
b>a > 1, that is A, = a®TD/2p(k=1)/2 when k is odd, or A\, = a¥/2b¥/2 when k is even. Then, it
can easily be shown that

a/(a—1); (kis odd)
{b/(b —1); (kis even) A(uy)

Uk: =

{(b —a)/la=1)(b-1)];  (kis odd)
—(b—a)/[(a—1)(b—1)]; (kis even)

b—a (a—1)(b+1) (ab)*(nfl)/2 : (n is odd)

A _)ab—1 ab—1
An(u) = b—a a(b? - 1)

S ab—1 ab—1
where n, k > 1. Thus, it is clear that all of u, A(u), A(u) and A(k) are oscillated.

" II - When u & {5 and so A(u) must be oscillated through +o0o0, —oco or both (in this case, the
inclusions co(A) C co(A*) and £oo(A) C loo(AN) are strict): For example, consider the sequence

(ab)™™/2; (n is even)

26
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A= (1,3,4,8,9,--+), that is Ay, = (k + 1)?/4 when k is odd, or A\, = (k* 4+ 4k)/2 when k is even.
Then, it can easily be seen that

{(k +1)2/4; (kis odd) A {(k;2 +k-2)/4;  (kis odd)
Uk = . . (ur) = 2 ) '
(k+4)/4; (kis even) (=k*+k+4)/4; (kiseven)

A _JBn=1)/Bn+3);  (nisodd)
Anl) = {(—” +4)/(3n); (n is even)

where n, k > 1. Hence, we have u, — oo, A(u) is oscillated between +oo, A(u) is oscillated between
1 and —1/3, and so A(k) will be oscillated between 0 and 4/3.

4 The Schauder bases for ¢ (AA) and c (AA)

In the last section, we construct the Schauder bases for the A-difference spaces cq (A)‘) and ¢ (A/\)
and conclude their separability.

If a normed space X contains a sequence (bk)zozl with the property that for every x € X there is a
unique sequence (ay)po, of scalars such that lim,_, ||z — (1b1 + a2bs + - - + @by )| = 0; then the
sequence (by),—, is called a Schauder basis for X (or simply a basis for X) and the series Y ;- | aby
which has the sum z is then called the expansion of x, with respect to the given basis, which can
be written as z = Y-, aibk, and we then say that x has been uniquely represented in that form.
For example, the sequences (e1,ea,€3,---) and (e, eq,ea, - +) are the Schauder bases for the sequence
spaces ¢g and ¢, respectively, where e = (1,1,1,...) and e = (0,%)5%; for each k, but the space fo,
is non-separable and so it has no a Schauder basis [7].

Theorem 4.1 For each k > 1, define the sequence ey = (e),.)o, by

0; (n < k),
Ak
A . =k >1
T s et SRR U N CESY
1; (n>k),

Then, the sequence (eg)kzl is a Schauder basis for the space co(A*) and every x € co(A*) has a
unique representation in the following form:

r=> A(x)ep. (4.1)
k=1

Proof. It is clear that An(eg) =0forl1<n<kand An(eg) =1 for n > k and so An(ei‘) = 0, for
all n,k > 1. Thus A(e) = ex € co and hence e} € co(A*) for all k > 1. This means that (),
a sequence in co(A*). Further, let x € co(A*) be given and for every positive integer m, we put

is

Then, we find that

and hence
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Now, for any positive real e > 0, there is a positive integer mg such that |A,,(z)| < e for all m > mq.
Thus, for every m > myg, we have

e = 2|, = sup A, (2)] < sup |Aa(a)] <.
n>m

n>mo

We therefore deduce that lim,, oo |z — 2|y = 0 which means that x is represented as in (4.1).
Thus, it is remaining to show the uniqueness of the representation (4.1) of z. For this, suppose that
=) 7. ayep. Then, we have to show that o, = A, (z) for all n, which is immediate by operating
A,, on both sides of (4.1) for each n > 1, where the continuity of A (as we have seen in Remark 2.4)
allows us to obtain that

An(x) = Zak An(eé) = Zak Onk = Qi
k=1 k=1
for all n > 1 and hence the representation (4.1) of x is unique, and this completes the proof. O

Theorem 4.2 The sequence (e)‘,ei\,eg‘, . ) is a Schauder basis for the space c(AN) and every x €
c(A*) has a unique representation in the following form.:

r=Le+ Z ([\k(a:) - L) ey, (4.2)
k=1
where L = lim,,_, /~\n(x), the sequence (62);021 is as in Theorem 4.1 and e is the following sequence:

Ry A —(n—1) N1\~
B )\n - )\nfl

n=1

Proof. It was already shown in the proof of Lemma 3.1 that A(e*) = ¢ € ¢ and so e* € ¢(A*). This
together with e} € co(A*) C ¢(A*) imply that that (e*, e}, e3, ) is a sequence in ¢(A*). Also, let
z € ¢(A*) be given. Then A(z) € ¢ which yields the convergence of the sequence A(z) to a unique
limit, say L = lim,_ oo Ay (). Thus, by taking y = 2 — Le*, we get A(y) = A(z) — Le € ¢y and so
y € co(A*). Hence, it follows by Theorem 4.1 that y can be uniquely represented in the following

form:
y=> M(yer=> (Ak(fﬂ) - L]\k(eA)) n= (Ak(ff) - L) e
k=1 k=1 e

Consequently, our = can also be uniquely written as

r=LeM+y= Le>‘+i(]\k(:c)fL)eﬁ
k=1

which proves the unique representation (4.2) of x. ]

Example 4.3 To give an example of the unique representation of a single sequence in particular
spaces of co(A*) and ¢(A*), consider the sequence A = (A) given by Ay = k(k + 1) for k > 1. Then,
we have A, (2) = A, () — Ay—1(x) for all n > 1 and every = € w, where

An(z) = n(%ﬂ) >k (w21,

This yields the following particular cases of the general spaces of A-difference sequences:

2 -

CQ(AA) = {1’ = (I’k) : <n(n—|—1) kzlkxk)n_l S CO(A)} y
2 -

C(AA) = {$ = (wk) : <n('n,—|—1) ’;kwk> . € C(A) } .

Albaydha University Journal 3 (2), 2021



(slasd) Analad ALY alad) jaigal) Elagly gald 232) 2021 Guband | (2)332 — (3)daal) — pliasl) Aaals Alaa

Further, with help of Theorems 4.1 and 4.2, the Schauder bases for these two spaces are respectively
the two sequences (e}, e3,€3,---) and (e*, e}, €3, -+ ), where
61*(11 1 )76%:(073/23131 ) 63*(0707231315"')362:(0707035/27"')7
and et = ((3k —1)/2),_, =(1,5/2,4,11/2, ---).

Now, consider the sequence y = (yi) € co(A*) defined by yj, = (k+ 1)Vk — (k — 1)vk —1 for k > 1.
Then, we have A, (y) = 2y/n and so A, (y) = 2(y/n—+/n — 1) for all n > 1. Thus, our sequence y has
the unique representation y =2 >~ (v/n — v/n — A in terms of the Schauder basis (e)) of the
space ¢o(A*). In addition, if we define # = (z4) by @ = 1 — 3k + yj for k > 1. Then, we find that
A, (z) = =2+ A, (y) for all n > 1. Thus x € ¢(A*) such that lim,,_,o A, () = —2. Hence, by applying
Theorem 4.2, the sequence z has also a unique representation z = —2e*+2 Y7 (y/n—+vn—1)e)

in terms of the Schauder basis (e*, e}, €3, -) of the space c(A*).

Corollary 4.4 We have the following facts:
(1) The spaces co(A*) and c(AN) are separable BK-spaces.
(2) The space oo (A™) is a non-separable BK-space and has no a Schauder basis.
Remark 4.5 We end our work by expressing from now on that our aim of the next paper is to

determining the duals of our difference A-sequence spaces and characterizing some matrix operators
between them.

29
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