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Abstract
. 

The λ-sequence spaces  and  have already been studied by Mursaleen and Noman. Next, they 
have also studied the difference λ-sequence spaces and `∞ (∆)by using the usual 
manner of difference spaces of sequences. In present paper, we will go away to use another manner 

in order to introduce the new λ-difference spaces  and , and then we will study 
their properties, bases and inclusion relations. Further, we will show that our new spaces are 
Banach spaces isometrically isomorphic to the related classical sequence spaces c0 ,c and `∞. 
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Introduction 

We will write w for the linear space of all real 

or complex sequences. A sequence x ∈ w will 

be simply written as x = (xk) instead of

. Also, we will use the conventions 

e = (1,1,1,...) and  for each k ≥ 1, 

that is ek is the sequence with zero terms 

except the k-term only which is 1 

 

 

 

 

 Also, any term with non -positive 

subscript is equal to naught, i.e. x0 = 0 and 

x−1 = 0. Any linear subspace of w is called a 

sequence space, and we will write     ,c and 

c0 for the classical sequence spaces of 

bounded, convergent and null sequences, 

`∞

respectively. Further, we will write 

`∞ (∆) , c (∆) and c0 (∆) for the usual difference spaces, e.g. `∞ (∆) = {x ∈ w : (xk − xk−1) ∈ `∞}.
A sequence space X together with a norm ‖·‖ is called a normed sequence space, and a complete
normed sequence space is called a Banach sequence space. By a BK-space, we mean a Banach
sequence space with continuous coordinates. An infinite matrix A whose real or complex entries ank
for all n, k ≥ 1 will be written as A = [ank ] instead of A = [ank]

∞
n,k=1. The act of A on a sequence

x ∈ w is called the A-transform of x, and is defined to be the sequence A (x) = (An (x))
∞
n=1, where

An (x) =

∞∑
k=1

ank xk; (n ≥ 1) ,

provided the series on the right hand side converges for each n, and we then say that A (x) exists or
is well-defined. For two sequence spaces X and Y , we say that an infinite matrix A defines a matrix
operator form X to Y , which is a linear operator, and we denote it by A : X → Y , if A acts form X

to Y , i.e, if for every sequence x ∈ X; the A-transform of x exists and is in Y . Moreover, we will write
(X,Y ) for the class of all infinite matrices that map X into Y , i.e, A ∈ (X,Y ) if and only if A (x) is
well-defined and A (x) ∈ Y for every x ∈ X.

For an infinite matrix A and a sequence space X , the matrix domain of A in X is denoted by XA

which is a sequence space defined as XA = {x ∈ w : A(x) ∈ X}. An infinite matrix A is called a
triangle if ank = 0 for all k ≥ n and ann 6= 0 for all n, where n, k ≥ 1. If X is a BK-space with its
norm ‖·‖ and A is a triangle, then the matrix domain XA is also a BK-space with the norm ‖·‖A
defined by ‖x‖A =‖A(x)‖ for all x ∈ XA. We will write ∆ for the band matrix of difference, that is
∆(x) = (xn − xn−1)

∞
n=1 = (x1, x2 − x1 , x3 − x2, · · · ) which means that ∆(xk) = xk − xk−1 for all k.

So that, the difference sequence space c0(∆), c(∆) and `∞(∆) can be defined as the matrix domains
of ∆ in c0, c and `∞, respectively. That is c0(∆) = (c0)∆, c(∆) = (c)∆, and `∞(∆) = (`∞)∆. It is
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well-known that c0, c and `∞ are BK-spaces with the norm ‖·‖∞ defined by ‖x‖∞ = supn|xn|, where
the supremum is taking over all positive integers n. This yields that the difference spaces c0(∆), c(∆)
and `∞(∆) are BK-spaces with the norm ‖·‖∆ defined by ‖x‖∆ = supn|xn − xn−1|.
The idea of constructing a new difference sequence space by means of the matrix domain of a partic-
ular triangle has largely been used by several authors, they specially introduce many new difference
sequence spaces in different ways. For instance, see [1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15, 17] and [19].

2 The new λ-difference sequence spaces

In this section, we will introduce the new λ-difference sequence spaces c0(∆λ), c(∆λ) and `∞(∆λ).
Throughout this paper, we assume that λ = (λk)

∞
k=1 is a strictly increasing sequence of positive reals,

that is 0 < λ1 < λ2 < · · · . Then, for any x ∈ w; we define the sequence Λ (x) = (Λn (x))
∞
n=1 by

Λn (x) =
1

λn

n∑
k=1

(λk − λk−1)xk (; n ≥ 1) . (2.1)

In [10] and [12], the λ- sequence spaces have been introduced by Mursaleen and Noman as follows:

cλ0 =
{
x ∈ w : Λ(x) ∈ c0

}
, cλ = {x ∈ w : Λ (x) ∈ c} and `λ∞ = {x ∈ w : Λ (x) ∈ `∞} .

Also, the difference λ-sequence spaces cλ0 (∆) , cλ (∆) and `λ∞ (∆) have been studied in [11] as follows:

cλ0 (∆) =
(
cλ0
)

∆
, cλ (∆) =

(
cλ
)

∆
and `λ∞ (∆) =

(
`λ∞
)

∆
.

Now, we will go away from the technique used in [11] and introduce the λ-difference sequence spaces,
which is our contribution in this paper, as follows:

c0
(
∆λ
)

=
{
x ∈ w : Λ(x) ∈ c0(∆)

}
,

c
(
∆λ
)

=
{
x ∈ w : Λ(x) ∈ c(∆)

}
,

`∞
(
∆λ
)

=
{
x ∈ w : Λ(x) ∈ `∞(∆)

}
.

Besides, we define the triangle Λ̃ = [λ̃nk] for all n, k ≥ 1 by

λ̃nk =


˜
λn − λn−1

λn
(; n = k),

(̃λk − λk−1)

(
1

λn
− 1

λn−1

)
; (n > k),

(0 ; n < k).

Then, for any sequence x ∈ w, it can be easily shown that

Λ̃n(x) = Λn(x)− Λn−1(x () n ≥ 1)

and so Λ̃(x) = ( Λn(x)− Λn−1(x) )
∞
n=1. Thus, the spaces c0(∆λ), c(∆λ) and `∞(∆λ) can be defined

as the matrix domains of the triangle Λ̃ in the spaces c0, c and `∞, respectively. That is

c0
(
∆λ
)

= (c0)Λ̃ c,
(
∆λ
)

= (c)Λ̃ and `∞
(
∆λ
)

= (`∞)Λ̃ (2.2)

which means that

c0
(
∆λ
)

=
{
x ∈ w lim:

n→∞
Λ̃n(x) = 0

}
,

c
(
∆λ
)

=
{
x ∈ w lim:

n→∞
Λ̃n(x) exists

}
,

`∞
(
∆λ
)

=

{
x ∈ w : sup

n

∣∣∣Λ̃n(x)
∣∣∣ <∞} .

It follows that our spaces are sequence spaces of difference type, and we can prove the following results:
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Lemma 2.1 The λ-difference sequence spaces c0
(
∆λ
)
, c
(
∆λ
)

and `∞
(
∆λ
)

are BK-spaces with
the norm ‖·‖λ defined by

‖x‖λ = ‖Λ̃ (x)‖∞ sup=
n
| Λ̃n(x) | sup=

n
|Λn(x)− Λn−1(x) | .

Proof. Since c0, c and `∞ are BK-spaces with respect to their natural norm (see [7]) and the matrix
Λ̃ is a triangle; from (2.2) we deduce the fact that c0(∆λ), c(∆λ) and `∞(∆λ) are BK-spaces with
the given norm which is obtained by the famous result of Wilansky [18]. 2

Theorem 2.2 The λ-difference sequence spaces c0
(
∆λ
)
, c
(
∆λ
)

and `∞
(
∆λ
)

are isometrically linear-
isomorphic to the spaces c0 , c and `∞, respectively. That is

c0
(
∆λ
) ∼= c0 c,

(
∆λ
) ∼= c and `∞

(
∆λ
) ∼= `∞.

Proof. To show that c0(∆λ) ∼= c0, we will prove the existence of a linear operator between c0(∆λ) and
c0 which is bijective and norm-preserving. For, we define the mapping Λ̃ : c0(∆λ) → c0 by x 7→ Λ̃(x)
for all x ∈ c0(∆λ). Then, this mapping is clearly a linear operator which is well-defined. Also, it is
easy to see that Λ̃(x) = 0 implies x = 0 which means that Λ̃ is injective. Further, to show that Λ̃ is
surjective, let y ∈ c0 and define the sequence x = (xk) by

xk =
1

λk − λk−1

(
λk

k∑
i=1

yi − λk−1

k−1∑
i=1

yi

)
(; k ≥ 1),

where x1 = y1 (since λ0 = 0). Then, for every n ≥ 1, we have

Λn (x) =
1

λn

n∑
k=1

(λk − λk−1)xk =
1

λn

n∑
k=1

(
λk

k∑
i=1

yi − λk−1

k−1∑
i=1

yi

)
=

n∑
i=1

yi

which implies that Λ̃n(x) = Λn(x) − Λn−1(x) =
∑n
i=1 yi −

∑n−1
i=1 yi = yn for every n ≥ 1 and this

means Λ̃(x) = y ∈ c0 and so x ∈ c0(∆λ) such that Λ̃(x) = y. This shows that Λ̃ is surjective and hence
Λ̃ is a linear isomorphism. Finally, for any x ∈ c0(∆λ), we have by Lemma 2.1 that ‖x‖λ = ‖Λ̃(x)‖∞
which means that Λ̃ is norm-preserving, and so Λ̃ is a linear bijection which preserves the norm.
Hence, we deduce that c0(∆λ) ∼= c0. Similarly, we can show that c

(
∆λ
) ∼= c and `∞

(
∆λ
) ∼= `∞. 2

Corollary 2.3 The λ-difference sequence spaces c0
(
∆λ
)
, c
(
∆λ
)

and `∞
(
∆λ
)

are isometrically
linear-isomorphic to the spaces c0(∆) , c(∆) and `∞(∆), respectively. That is

c0
(
∆λ
) ∼= c0(∆) c,

(
∆λ
) ∼= c and(∆) `∞

(
∆λ
) ∼= `∞(∆).

Remark 2.4 The matrix operator Λ̃ defined on any of the spaces c0
(
∆λ
)
, c
(
∆λ
)

or `∞
(
∆λ
)

into
the corresponding space of c0, c or `∞ (respectively) is an isometry linear isomorphism as we have
already shown in the proof of Theorem 2.2, and this implies the continuity of the matrix operator Λ̃.

At the end of this section, we give an example to show that our new λ-difference spaces of sequences
are totally different from the classical sequence spaces and from the well-known λ-sequence spaces.
For simplicity in notations, we will use the symbole µ to denote any of the spaces c0, c or `∞, and so
µ(∆λ) is the respective one of the spaces c0(∆λ), c(∆λ) or `∞(∆λ).

Example 2.5 In this example, our aim is to show that the space µ(∆λ) is different from all the
sequence spaces µ, µ(∆), µλ and µλ(∆). For this, consider the sequence λ = (λk) defined by λk =
(2k−1)/2k for all k ≥ 1 which is a strictly increasing sequence of positive reals. Then ∆(λk) = 1/22k−1

(k ≥ 1) and for any sequence x ∈ w we have Λ̃n(x) = Λn(x)− Λn−1(x) for all n ≥ 1, where

Λn(x) =
2n

2n − 1

n∑
k=1

xk
22k−1

(; n ≥ 1).
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Now, consider the unbounded sequence x = (xk) given by xk = 22k−1(
√
k −
√
k − 1) for all k ≥ 1.

Then, it can easily be show that Λn(x) =
√
n(1 + 1/(2n − 1) ) for all n, and so we obtain that

Λ̃n(x) =
√
n−
√
n− 1 +

√
n

2n − 1
−
√
n− 1

2n−1 − 1
; (n > 1)

which shows that Λ̃(x) ∈ c0. Thus x ∈ c0(∆λ) and hence x ∈ µ(∆λ) ( since c0(∆λ) ⊂ c(∆λ) ⊂
`∞(∆λ) ). On other side, it is clear that x 6∈ `∞ and so x 6∈ µ. Thus, we have x ∈ µ(∆λ) while x 6∈ µ.
Consequently, it follows that µ(∆λ) 6= µ. Also, we note that Λ(x) 6∈ `∞ and hence x 6∈ `λ∞ which means
that x 6∈ µλ and so µ(∆λ) 6= µλ. Further, for every k ≥ 1, we have

√
k +
√
k − 1 ≥ (

√
k + 1 +

√
k )/2

and hence
√
k−
√
k − 1 ≤ 2(

√
k + 1−

√
k ). Thus, it follows that ∆(xk+1) ≥ 22k(

√
k + 1−

√
k ) which

implies that ∆(xk) ≥ xk/2→∞ (as k →∞) and so Λn( ∆(x) ) ≥ Λn(x)/2→∞ (as n→∞). Hence,
we deduce that x 6∈ `∞(∆) as well as x 6∈ `λ∞(∆) and so x 6∈ µ(∆) as well as x 6∈ µλ(∆), which means
that µ(∆λ) 6= µ(∆) and µ(∆λ) 6= µλ(∆). Therefore, the space µ(∆λ) is different from all the sequence
spaces µ, µ(∆), µλ and µλ(∆).

3 Some inclusion relations

In this section, we derive some interesting inclusion relations between our new λ-difference sequence
spaces and the classical sequence spaces ( specially, the difference types c0(∆), c(∆) and `∞(∆) ).

Lemma 3.1 The inclusions c0
(
∆λ
)
⊂ c

(
∆λ
)
⊂ `∞

(
∆λ
)

strictly hold.

Proof. These inclusions are immediate from the inclusions c0 ⊂ c ⊂ `∞. To show that these inclusions
are strictly, we consider the two sequences x and y defined by

xk =
kλk − (k − 1)λk−1

λk − λk−1
, yk =

(−1)
k

2

(
λk + λk−1

λk − λk−1

)
(k ≥ 1) .

Then, for any n ≥ 1, it can be easily seen that

Λn(x) =
1

λn

n∑
k=1

(kλk − (k − 1)λk−1) = n , Λn (y) =
1

2λn

n∑
k=1

(−1)k(λk + λk−1) =
(−1)

n

2

and so Λ̃n (x) = Λn (x) − Λn−1 (x) = 1 and Λ̃n (y) = Λn (y) − Λn−1 (y) = (−1)
n

which imply
that Λ̃n (x) = e ∈ c\c0 and Λ̃n (y) ∈ `∞\c which maen that x ∈ c

(
∆λ
)∖
c0
(
∆λ
)

and y ∈
`∞
(
∆λ
)∖
c0
(
∆λ
)
. This completes the proof. 2

Lemma 3.2 The inclusion cλ ⊂ c0
(
∆λ
)

strictly holds.

Proof. For any x ∈ cλ, we have Λ (x) ∈ c and so Λ̃ (x) = (Λn (x)− Λn−1 (x)) ∈ c0 which means
that x ∈ c0

(
∆λ
)

and hence cλ ⊂ c0
(
∆λ
)
. Also, to show that this inclusion is strict, define the

sequence x = (xk) by xk = (λk
√
k − λk−1

√
k − 1 ) / (λk − λk−1) for k ≥ 1. Then Λn (x) =

√
n

and so Λ (x) = (
√
n) /∈ c which means x /∈ cλ, but Λ̃ (x) =

(√
n−
√
n− 1

)
∈ c0 which shows that

x ∈ c0
(
∆λ
)∖
cλ. 2

Corollary 3.3 The spaces c0, c and cλ0 are strictly included in c0
(
∆λ
)
.

Corollary 3.4 The inclusions cλ0 ⊂ c0
(
∆λ
)
, cλ ⊂ c

(
∆λ
)
and `λ∞ ⊂ `∞

(
∆λ
)

strictly hold.

Remark 3.5 The spaces `∞ and c0
(
∆λ
)

overlap, but `∞ cannot include c0
(
∆λ
)
. To see that, we

have c ⊂ `∞ ∩ c0
(
∆λ
)
, and the sequence x in the proof of Lemma 3.2 is unbounded, since xk ≥

√
k

for all k ≥ 1, which means that x ∈ c0
(
∆λ
)∖
`∞.
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Theorem 3.6 The inclusion `∞ ⊂ c0
(
∆λ
)

strictly holds if and only if limn→∞ λn−1/ λn = 1.

Proof. It is clear that `∞ ⊂ c0
(
∆λ
)

if and only if Λ̃ ∈ (`∞, c0) which is equivalent to the condition

limn→∞
∑∞
k=1 |λ̃nk| = 0 [16]. On other hand, for any n > 1, we have

∞∑
k=1

∣∣∣λ̃nk∣∣∣ =

(
1

λn−1
− 1

λn

) n−1∑
k=1

(λk − λk−1) +
λn − λn−1

λn
= 2

(
λn − λn−1

λn

)
= 2

(
1− λn−1

λn

)
.

Thus, we find that limn→∞
∑∞
k=1 |λ̃nk| = 0 if and only if limn→∞ λn−1/λn = 1. This proves that

`∞ ⊂ c0
(
∆λ
)

if and only if limn→∞ λn−1/λn = 1. Also, this inclusion is strict because the equality
cannot be satisfied by Remark 3.5. 2

Now, in the following results, we will discuss the inclusions c0 (∆) ⊂ c0
(
∆λ
)
, c (∆) ⊂ c

(
∆λ
)

and

`∞ (∆) ⊂ `∞
(
∆λ
)
, and for this we need the following Lemmas:

Lemma 3.7 For any sequence x ∈ w, we have

Λ̃n (x) =

(
1

λn−1
− 1

λn

) n∑
k=2

λk−1 ∆ (xk () n ≥ 2) . (3.1)

Proof. Let x ∈ w. Then, for any n ≥ 2, we have

Λ̃n(x) = Λn (x)− Λn−1 (x) =
1

λn

n∑
k=1

(λk − λk−1)xk −
1

λn−1

n−1∑
k=1

(λk − λk−1)xk

and so we find that

Λ̃n(x) =
1

λn

n∑
k=1

(λk − λk−1)xk −
1

λn−1

n∑
k=1

(λk − λk−1)xk +

(
λn − λn−1

λn−1

)
xn

=

(
λn − λn−1

λn−1

)
xn −

(
1

λn−1
− 1

λn

) n∑
k=1

(λk − λk−1)xk

=

(
λn − λn−1

λnλn−1

) n∑
k=1

(λkxk − λk−1xk−1)−
(
λn − λn−1

λnλn−1

) n∑
k=1

(λk − λk−1)xk

=

(
λn − λn−1

λnλn−1

) n∑
k=1

λk−1(xk − xk−1)

=

(
λn − λn−1

λnλn−1

) n∑
k=2

λk−1 ∆ (xk)

=

(
1

λn−1
− 1

λn

) n∑
k=2

λk−1 ∆ (xk) . 2

Remark 3.8 The two sequences (k)∞k=1 and (λk/(λk − λk−1) )∞k=1 will be used, and we have the
following equalities:

(1)
λk

λk − λk−1
= 1 +

λk−1

λk − λk−1
(k ≥ 1) ,

(2) ∆

(
λk

λk − λk−1

)
= ∆

(
λk−1

λk − λk−1

)
(k ≥ 2) ,

(3) Λ̃n

(
λk

λk − λk−1

)
= Λ̃n

(
λk−1

λk − λk−1

)
(n ≥ 2) ,

(4) Λ̃n (k) =

(
1

λn−1
− 1

λn

) n∑
k=2

λk−1 (n ≥ 2) ,

(5) Λ̃n

(
λk−1

λk − λk−1

)
=

(
1

λn−1
− 1

λn

) n∑
k=2

λk−1 ∆

(
λk−1

λk − λk−1

)
(n ≥ 2) .
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Lemma 3.9 We have the following:

(1) Λ̃n (k) + Λ̃n

(
λk−1

λk − λk−1

)
(= 1 n ≥ 1) ,

(2) λk−1 ∆

(
λk−1

λk − λk−1

)
≤ ∆

(
λkλk−1

λk − λk−1

)
(k ≥ 2) ,

(3)

∣∣∣∣ Λ̃n( λk−1

λk − λk−1

) ∣∣∣∣ ≤ ˜1 , (n ≥ 1) ,

(4) 0 ≤ Λ̃n (k) ≤ (2 n ≥ 1) .

Proof. For(1), we have

Λ̃n (k) + Λ̃n

(
λk−1

λk − λk−1

)
= Λ̃n

(
k +

λk−1

λk − λk−1

)
= Λ̃n

(
kλk − (k − 1)λk−1

λk − λk−1

)
= 1

as we have seen in Lemma 3.1. For (2), it is obvious, for any k ≥ 2, that

∆

(
λkλk−1

λk − λk−1

)
= λk−1

(
λk

λk − λk−1
− λk−2

λk−1 − λk−2

)
= λk−1

[
1 + ∆

(
λk−1

λk − λk−1

)]
and we have done by noting that

λk−1

[
1 + ∆

(
λk−1

λk − λk−1

)]
≥ λk−1∆

(
λk−1

λk − λk−1

)
.

To prove (3), we use (5) of Remark 3.8. Then, for any n ≥ 2, we have∣∣∣∣Λ̃n( λk−1

λk − λk−1

) ∣∣∣∣ =

(
1

λn−1
− 1

λn

) ∣∣∣∣∣
n∑
k=2

λk−1 ∆

(
λk−1

λk − λk−1

)∣∣∣∣∣
≤
(

1

λn−1
− 1

λn

) ∣∣∣∣∣
n∑
k=2

∆

(
λkλk−1

λk − λk−1

)∣∣∣∣∣
=

(
1

λn−1
− 1

λn

)(
λnλn−1

λn − λn−1

)
.

= 1.

Finally, for (4) we find form (4) of Remark 3.8 that Λ̃n (k) ≥ 0 and so the result follows by (3), where

Λ̃n (k) =
∣∣∣Λ̃n (k)

∣∣∣ =

∣∣∣∣1− Λ̃n

(
λk−1

λk − λk−1

)∣∣∣∣ ≤ 1 +

∣∣∣∣Λ̃n( λk−1

λk − λk−1

)∣∣∣∣ . 2

Now, lets define the triangle A as follows:

A =


001 · · ·

0 λ1

(
1
λ1
− 1

λ2

)
0 · · ·

0 λ1

(
1
λ2
− 1

λ3

)
λ2

(
1
λ2
− 1

λ3

)
· · ·

...
...

...


Then, it follows by Lemma 3.7 that Λ̃n (x) = An (∆x) for all n ≥ 1 and so Λ̃n (x) = A (∆x) for every
x ∈ w. Also, it is clear that

lim
n→∞

ank = λk−1 lim
n→∞

(
1

λn−1
− 1

λn

)
(= 0 k ≥ 2),

∞∑
k=1

|ank| =
∞∑
k=1

ank =

(
1

λn−1
− 1

λn

) n∑
k=2

λk−1 (n ≥ 2).
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Thus, we have limn→∞ ank = 0 for each k ≥ 1 and
∑∞
k=1 |ank| =

∑∞
k=1 ank = Λ̃n (k) for all n ≥ 1.

Hence, by combining these facts with the results of [16] that

A ∈ (`∞, `∞) ⇔ A ∈ (c0, c0) ⇔ sup
n

Λ̃n (k) < ∞ ⇔ Λ̃n (k) ∈ `∞ , (3.2)

A ∈ (c, c) ⇔ lim
n→∞

Λ̃n (k) exists ⇔ Λ̃n (k) ∈ c . (3.3)

Theorem 3.10 We have the following:

(1) The inclusions c0 (∆) ⊂ c0
(
∆λ
)
and `∞ (∆) ⊂ `∞

(
∆λ
)

always hold.

(2) The inclusion c (∆) ⊂ c
(
∆λ
)

holds if and only if Λ̃ (λk/(λk − λk−1) ) ∈ c .

(3) limn→∞ Λ̃n(x) = limn→∞∆(xn) for every x ∈ c(∆) if and only if Λ̃ (λk/(λk − λk−1) ) ∈ c0.

Proof. For(1), we have x ∈ c0 (∆) if and only if ∆x ∈ c0.. Thus, we obtain from the fact Λ̃ (x) =
A (∆x) for all x ∈ w that:

c0 (∆) ⊂ c0
(
∆λ
)
⇔ Λ̃ (x) ∈ c0 ∀ x ∈ c0 (∆)
⇔ A (∆x) ∈ c0 ∀ ∆(x) ∈ c0
⇔ A (y) ∈ c0 ∀ y ∈ c0
⇔ A ∈ (c0, c0) .

Similarly, we can show that `∞ (∆) ⊂ `∞
(
∆λ
)
⇔ A ∈ (`∞, `∞) . Thus, it follows from (3.2) that

c0 (∆) ⊂ c0
(
∆λ
)
⇔ `∞ (∆) ⊂ `∞

(
∆λ
)
⇔ Λ̃n (k) ∈ `∞ .

But the condition Λ̃ (k) ∈ `∞ is always satisfied by (4) of Lemma 3.9. Therefore, the inclusions
c0(∆) ⊂ c0(∆λ and) `∞(∆) ⊂ `∞(∆λ) always hold.
To prove (2), we can use the same technique to show that c (∆) ⊂ c(∆λ) ⇔ A ∈ (c, c) ⇔ Λ̃ (k) ∈ c
which can be obtained with help of (3.3). Thus, by using (1) of Lemma 3.9, we deduce the equivalence
c (∆) ⊂ c

(
∆λ
)
⇔ Λ̃ (λk/(λk − λk−1) ) ∈ c . Finally, to prove (3), let x ∈ c(∆) with ∆(xk) → L as

k →∞. Then (xk − Lk) ∈ c0(∆) ⊂ c0(∆λ). Also, since Λ̃n(x) = Λ̃n(xk − Lk) + LΛ̃n(k) ; we find by
passing to the limits when n→∞ that

lim
n→∞

Λ̃n(x) = L lim
n→∞

Λ̃n(k) = L− L lim
n→∞

Λ̃n

(
λk−1

λk − λk−1

)
.

Thus, the regular case limn→∞ Λ̃n(x) = limn→∞∆(xn) holds for every x ∈ c(∆) if and only if
Λ̃ (λk/(λk − λk−1) ) ∈ c0, or equivalently limn→∞ Λ̃n(k) = 1 (note that: (λk/(λk − λk−1) ) ∈ c0(∆)
implies Λ̃ (λk/(λk − λk−1) ) ∈ c0 but not the converse). 2

Remark 3.11 We may note, by Theorem 3.10 and its proof, that the inclusion c (∆) ⊂ c
(
∆λ
)

implies

both inclusions c0 (∆) ⊂ c0
(
∆λ
)
and `∞ (∆) ⊂ `∞

(
∆λ
)
, and the inclusion c (∆) ⊂ c

(
∆λ
)

holds if

and only if Λ̃ (k) ∈ c, and this condition can be written by (4) of Remark 3.8 as follows:

lim
n→∞

(
λn − λn−1

λnλn−1

) n∑
k=2

λk−1 exists.

Similarly, by using the same idea, we can show that the inclusion c0
(
∆λ
)
⊂ c0 (∆) holds if and only

if the inclusion `∞
(
∆λ
)
⊂ `∞ (∆) holds, and the inclusion c

(
∆λ
)
⊂ c (∆) implies both inclusions

c0
(
∆λ
)
⊂ c0 (∆) and `∞

(
∆λ
)
⊂ `∞ (∆), and these inclusions cannot be strict.

Now, for any sequence x ∈ w, we have the following equality (see [12, Lemma 4.1])

∆(xn)− Λ̃n(x) = ∆

(
λn−1

λn − λn−1
Λ̃n(x)

)
(n ≥ 2).
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Also, by using (2.1) and (3.1), we find for any n ≥ 2 that

Λn

(
λk−1

λk − λk−1
∆ (xk)

)
=

1

λn

n∑
k=1

λk−1∆ (xk) =
1

λn

n∑
k=2

λk−1∆ (xk) =
λn−1

λn − λn−1
Λ̃n(x)

and by operating ∆ on both sides and combining the last two equations, we deduce the following
equalities for any x ∈ w :

∆(xn)− Λ̃n(x) = ∆

(
λn−1

λn − λn−1
Λ̃n(x)

)
= Λ̃n

(
λk−1

λk − λk−1
∆ (xk)

)
(n ≥ 2). (3.4)

Theorem 3.12 We have the following:

(1) The equalities c0
(
∆λ
)

= c0 (∆) and `∞
(
∆λ
)

= `∞ (∆) hold if and only if (λk/(λk − λk−1) ) ∈
`∞ .

(2) The equality c
(
∆λ
)

= c (∆) holds if and only if (λk/(λk − λk−1) ) ∈ `∞ ∩ c0(∆) .

Proof. For (1), if (λk/(λk − λk−1)) ∈ `∞ and so (λk−1/(λk − λk−1)) ∈ `∞ by (1) of Remark 3.8; then
from (3.4) we find that x ∈ c0(∆) ⇔ x ∈ c0(∆λ), as well as x ∈ `∞(∆) ⇔ x ∈ `∞(∆λ), and hence
the two equalities in (1) hold. Conversely, if `∞(∆λ) = `∞(∆), or equivalently c0(∆λ) = c0(∆);
then it follows from the proof of Lemma 3.1 that y ∈ `∞(∆λ) and so y ∈ `∞(∆) , where

yk =
(−1)

k

2

(
λk + λk−1

λk − λk−1

)
(k ≥ 1) .

Thus, we have ∆y ∈ `∞,. But, for any k ≥ 2 we also have

|∆(yk)| = 1

2

(
λk + λk−1

λk − λk−1
+
λk−1 + λk−2

λk−1 − λk−2

)
≥ 1

2

(
λk + λk−1

λk − λk−1

)
≥ λk−1

λk − λk−1

which implies that (λk−1/(λk − λk−1)) ∈ `∞ and so (λk/(λk − λk−1)) ∈ `∞.
To prove (2), suppose that (λk/(λk − λk−1)) ∈ `∞ ∩ c0(∆) or equivalently (λk−1/(λk − λk−1)) ∈
`∞ ∩ c0(∆). Then, it follows from (3.4) that x ∈ c

(
∆λ
)
⇔ x ∈ c (∆), because of limn→∞ Λ̃n(x) =

limn→∞∆(xn) for every x in c(∆λ) or in c(∆). To see that, we have

∆

(
λn−1

λn − λn−1
Λ̃n(x)

)
=

λn−1

λn − λn−1
∆( Λ̃n(x) ) + Λ̃n−1(x) ∆

(
λn−1

λn − λn−1

)
−→ 0 as n→∞,

∆

(
λk−1

λk − λk−1
∆ (xk)

)
=

λk−1

λk − λk−1
∆( ∆(xk) ) + ∆(xk−1) ∆

(
λk−1

λk − λk−1

)
−→ 0 as k →∞.

Conversely, suppose that c
(
∆λ
)

= c (∆). Then, we must have `∞
(
∆λ
)

= `∞ (∆) and therefore
(λk/(λk − λk−1)) ∈ `∞. Also, in the proof of Lemma 3.1, we have x ∈ c(∆λ) and so x ∈ c(∆), where

xk = k +
λk−1

λk − λk−1
(k ≥ 1)

such that limk→∞∆(xk) = limk→∞ Λ̃k(x) = 1. But ∆(xk) = 1 + ∆ (λk−1/(λk − λk−1 ) for all
k, which implies that limk→∞ ∆ (λk−1/(λk − λk−1 ) = 0 and so limk→∞ ∆ (λk/(λk − λk−1 ) = 0
by (2) of Remark 3.8. Thus, we deduce that (λk/(λk − λk−1 ) ∈ c0 (∆). Finally, we have already
shown that (λk/(λk − λk−1)) ∈ `∞ as well as (λk/(λk − λk−1 ) ∈ c0 (∆), which together imply that
(λk/(λk − λk−1 ) ∈ `∞ ∩ c0(∆) and this completes the proof. 2

Corollary 3.13 We have the following:

(1) If (λk/(λk − λk−1) ) ∈ c ; then the equality c
(
∆λ
)

= c (∆) holds.

(2) If Λ̃(k) ∈ c0; then all the spaces c0 (∆) , c (∆) and `∞ (∆) are strictly included in c0
(
∆λ
)
.
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Proof. (1) is immediate by (2) of Theorem 3.12. To prove (2), let x ∈ `∞ (∆). Then, there exists
M > 0 such that |∆ (xk)| ≤M for all k and so we obtain by (4) of Remark 3.8 that∣∣∣Λ̃n (x)

∣∣∣ ≤ ( 1

λn−1
− 1

λn

) n∑
k=2

λk−1 |∆ (xk)| ≤ M

(
1

λn−1
− 1

λn

) n∑
k=2

λk−1 ≤M Λ̃n (k) .

Thus, we get 0 ≤ |Λ̃n (x)| ≤ M Λ̃n (k) for all n. Consequently, the result follows by going to the
limits when n → ∞. 2

At the end of this section, we give some examples of the distinct cases of above results concerning the
inclusions µ(∆) ⊂ µ(∆λ), where µ denotes any of the spaces c0, c or `∞. For simplicity in notations,
we will use the symbole u = λ/∆λ, that is uk = λk/(λk − λk−1) for k ≥ 1.

Example 3.14 The cases of strict inclusions: for c0(∆) $ c0(∆λ) and `∞(∆) $ `∞(∆λ); it is enough

that u 6∈ `∞, but for c(∆) $ c(∆λ) we must have u 6∈ `∞ and Λ̃(u) ∈ c. The last case holds when
∆(u)→∞ or ∆(u) ∈ c with u 6∈ `∞. Thus, we have the following two cases:
˜ I - When ∆(u) ∈ c and u 6∈ `∞: consider the sequence λ = (λn) defined by λn = (n+ 1)a, where
a > 0 (n ≥ 1). Then, we have un →∞, ∆(un)→ 1/a, Λ̃n(u)→ 1/(1 + a) and Λ̃n(k)→ a/(1 + a).
˜ II - When ∆(u) → ∞: it is the strong case of strict inclusions as proved in Corollary 3.13. For
example, consider the sequence λ = (λn) given in Example 2.5 or the sequence λn = ln(1 + n) for
n ≥ 1. Then, we have un → ∞, ∆(un) → ∞, Λ̃n(u) → 1 and Λ̃n(k) → 0 (the main property of this
case is 1/λ 6∈ `p for every p > 0).
˜ In these two previous cases of this example, it is obvious that:

lim
n→∞

Λ̃n(u) = lim
n→∞

∆(un)

1 + ∆(un)
limand
n→∞

Λ̃n(k) = lim
n→∞

1

1 + ∆(un)
·

Example 3.15 The cases of identities: for c0(∆λ) = c0(∆) and `∞(∆λ) = `∞(∆); it is enough
that u ∈ `∞, but for c(∆λ) = c(∆) we must have u ∈ `∞ ∩ c0(∆). In the first case, the equality
c(∆λ) = c(∆) may fails as will be shown in the next example. Here, we will consider the the second
case (the strong case of regularity). For example, let λ = (λn) be defined by λn = (n+1)! or λn = an,
where a > 1 (n ≥ 1). In such case, we must have u ∈ `∞, ∆(un)→ 0, Λ̃n(u)→ 0 and Λ̃n(k)→ 1.

Example 3.16 The case of non-inclusion between c(∆) and c(∆λ): that is c(∆) 6⊂ c(∆λ) and c(∆λ) 6⊂
c(∆). In this case, we must have Λ̃(u) 6∈ c which means that the sequence Λ̃(u) is oscillated (it has
no unique limit). The main property of this case is not only that ∆(u) 6∈ c (e.g. ∆(u) → ∞ is not
the case) but the limit of ∆(u) does not exist and it must be oscillated between at least two values
(it maybe oscillated through ±∞). Here also, there are two distinct cases:
˜ I - When u ∈ `∞ and so it must be oscillated (in this case, the equalities c0(∆λ) = c0(∆) and
`∞(∆λ) = `∞(∆) are satisfied): For example, consider the sequence λ = (a, ab, a2b, a2b2, · · · ), where
b > a > 1, that is λk = a(k+1)/2 b(k−1)/2 when k is odd, or λk = ak/2 bk/2 when k is even. Then, it
can easily be shown that

uk =

{
a/(a− (1) ; k is odd)

b/(b− 1) ; (k is even)
∆(uk) =

{
(b− a)/[(a− 1)(b− (1)] ; k is odd)

−(b− a)/[(a− 1)(b− 1)] ; (k is even)

Λ̃n(u) =


b− a
ab− 1

+
(a− 1)(b+ 1)

ab− 1
(ab)−(n−1)/2 (; n is odd)

− b− a
ab− 1

+
a(b2 − 1)

ab− 1
(ab)−n/2 ; (n is even)

where n, k > 1. Thus, it is clear that all of u, ∆(u), Λ̃(u) and Λ̃(k) are oscillated.
˜ II - When u 6∈ `∞ and so ∆(u) must be oscillated through +∞, −∞ or both (in this case, the
inclusions c0(∆) ⊂ c0(∆λ) and `∞(∆) ⊂ `∞(∆λ) are strict): For example, consider the sequence
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λ = (1, 3, 4, 8, 9, · · · ), that is λk = (k + 1)2/4 when k is odd, or λk = (k2 + 4k)/2 when k is even.
Then, it can easily be seen that

uk =

{
(k + 1)2/ (4 ; k is odd)

(k + 4)/4 ; (k is even)
∆(uk) =

{
(k2 + k − 2)/ (4 ; k is odd)

(−k2 + k + 4)/4 ; (k is even)

Λ̃n(u) =

{
(3n− 1)/(3n (+ 3) ; n is odd)

(−n+ 4)/(3n () ; n is even)

where n, k > 1. Hence, we have uk → ∞, ∆(u) is oscillated between ±∞, Λ̃(u) is oscillated between
1 and −1/3, and so Λ̃(k) will be oscillated between 0 and 4/3.

4 The Schauder bases for c0

(
∆λ
)

and c
(
∆λ
)

In the last section, we construct the Schauder bases for the λ-difference spaces c0
(
∆λ
)

and c
(
∆λ
)

and conclude their separability.

If a normed space X contains a sequence (bk)
∞
k=1 with the property that for every x ∈ X there is a

unique sequence (αk)
∞
k=1 of scalars such that limn→∞ ‖x− (α1b1 + α2b2 + · · ·+ αnbn)‖ = 0; then the

sequence (bk)
∞
k=1 is called a Schauder basis for X (or simply a basis for X) and the series

∑∞
k=1 αkbk

which has the sum x is then called the expansion of x, with respect to the given basis, which can
be written as x =

∑∞
k=1 αkbk, and we then say that x has been uniquely represented in that form.

For example, the sequences (e1, e2, e3, · · ·) and (e, e1, e2, · · ·) are the Schauder bases for the sequence
spaces c0 and c, respectively, where e = (1, 1, 1, . . .) and ek = (δnk)∞n=1 for each k, but the space `∞
is non-separable and so it has no a Schauder basis [7].

Theorem 4.1 For each k ≥ 1, define the sequence eλk = (eλnk)∞n=1 by

eλnk =


(0 ; n ≤ k),

λk
λk − λk−1

; (n = k), (n ≥ 1)

(1 ; n > k),

Then, the sequence
(
eλk
)∞
k=1

is a Schauder basis for the space c0(∆λ) and every x ∈ c0(∆λ) has a
unique representation in the following form:

x =

∞∑
k=1

Λ̃k(x) eλk . (4.1)

Proof. It is clear that Λn(eλk) = 0 for 1 ≤ n < k and Λn(eλk) = 1 for n ≥ k and so Λ̃n(eλk) = δnk for

all n, k ≥ 1. Thus Λ̃(eλk) = ek ∈ c0 and hence eλk ∈ c0(∆λ) for all k ≥ 1. This means that
(
eλk
)∞
k=1

is

a sequence in c0(∆λ). Further, let x ∈ c0(∆λ) be given and for every positive integer m, we put

x(m) =

m∑
k=1

Λ̃k(x) eλk .

Then, we find that

Λ̃(x(m)) =

m∑
k=1

Λ̃k(x) Λ̃(eλk) =

m∑
k=1

Λ̃k(x) ek

and hence

Λ̃n(x− x(m)) =

 0 ; (1 ≤ n ≤ m),

Λ̃n(x) ; (n > m).
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Now, for any positive real ε > 0, there is a positive integer m0 such that |Λ̃m(x)| < ε for all m ≥ m0.
Thus, for every m ≥ m0, we have

‖x− x(m)‖λ = sup
n>m
|Λ̃n(x)| ≤ sup

n>m0

|Λ̃n(x)| ≤ ε .

We therefore deduce that limm→∞ ‖x − x(m)‖λ = 0 which means that x is represented as in (4.1).
Thus, it is remaining to show the uniqueness of the representation (4.1) of x. For this, suppose that
x =

∑∞
k=1 αk e

λ
k . Then, we have to show that αn = Λ̃n(x) for all n, which is immediate by operating

Λ̃n on both sides of (4.1) for each n ≥ 1, where the continuity of Λ̃ (as we have seen in Remark 2.4)
allows us to obtain that

Λ̃n(x) =

∞∑
k=1

αk Λ̃n(eλk) =

∞∑
k=1

αk δnk = αn

for all n ≥ 1 and hence the representation (4.1) of x is unique, and this completes the proof. 2

Theorem 4.2 The sequence
(
eλ, eλ1 , e

λ
2 , · · ·

)
is a Schauder basis for the space c(∆λ) and every x ∈

c(∆λ) has a unique representation in the following form:

x = Leλ +

∞∑
k=1

(
Λ̃k(x)− L

)
eλk , (4.2)

where L = limn→∞ Λ̃n(x), the sequence
(
eλk
)∞
k=1

is as in Theorem 4.1 and eλ is the following sequence:

eλ =

(
nλn − (n− 1)λn−1

λn − λn−1

)∞
n=1

.

Proof. It was already shown in the proof of Lemma 3.1 that Λ̃(eλ) = e ∈ c and so eλ ∈ c(∆λ). This
together with eλk ∈ c0(∆λ) ⊂ c(∆λ) imply that that

(
eλ, eλ1 , e

λ
2 , · · ·

)
is a sequence in c(∆λ). Also, let

x ∈ c(∆λ) be given. Then Λ̃(x) ∈ c which yields the convergence of the sequence Λ̃(x) to a unique
limit, say L = limn→∞ Λ̃n(x). Thus, by taking y = x − Leλ, we get Λ̃(y) = Λ̃(x) − Le ∈ c0 and so
y ∈ c0(∆λ). Hence, it follows by Theorem 4.1 that y can be uniquely represented in the following
form:

y =

∞∑
k=1

Λ̃k(y) eλk =

∞∑
k=1

(
Λ̃k(x)− L Λ̃k(eλ)

)
eλk =

∞∑
k=1

(
Λ̃k(x)− L

)
eλk .

Consequently, our x can also be uniquely written as

x = Leλ + y = Leλ +
∞∑
k=1

(
Λ̃k(x)− L

)
eλk

which proves the unique representation (4.2) of x. 2

Example 4.3 To give an example of the unique representation of a single sequence in particular
spaces of c0(∆λ) and c(∆λ), consider the sequence λ = (λk) given by λk = k(k + 1) for k ≥ 1. Then,
we have Λ̃n(x) = Λn(x)− Λn−1(x) for all n ≥ 1 and every x ∈ w, where

Λn(x) =
2

n(n+ 1)

n∑
k=1

k xk ; (n ≥ 1).

This yields the following particular cases of the general spaces of λ-difference sequences:

c0(∆λ) =

{
x = (xk) :

(
2

n(n+ 1)

n∑
k=1

k xk

)∞
n=1

∈ c0(∆)

}
,

c(∆λ) =

{
x = (xk) :

(
2

n(n+ 1)

n∑
k=1

k xk

)∞
n=1

∈ c(∆)

}
.
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Further, with help of Theorems 4.1 and 4.2, the Schauder bases for these two spaces are respectively
the two sequences

(
eλ1 , e

λ
2 , e

λ
3 , · · ·

)
and

(
eλ, eλ1 , e

λ
2 , · · ·

)
, where

eλ1 = (1, 1, 1, · · · ) , eλ2 = (0, 3/2, 1, 1, · · · ) , eλ3 = (0, 0, 2, 1, 1, · · · ) , eλ4 = (0, 0, 0, 5/2, · · · ) , . . .

and eλ =
(

(3k − 1)/2
)∞
k=1

= (1, 5/2, 4, 11/2, · · · ) .

Now, consider the sequence y = (yk) ∈ c0(∆λ) defined by yk = (k + 1)
√
k − (k − 1)

√
k − 1 for k ≥ 1.

Then, we have Λn(y) = 2
√
n and so Λ̃n(y) = 2(

√
n−
√
n− 1 ) for all n ≥ 1. Thus, our sequence y has

the unique representation y = 2
∑∞
n=1(
√
n −
√
n− 1 ) eλn in terms of the Schauder basis (eλn) of the

space c0(∆λ). In addition, if we define x = (xk) by xk = 1 − 3k + yk for k ≥ 1. Then, we find that
Λ̃n(x) = −2+Λ̃n(y) for all n ≥ 1. Thus x ∈ c(∆λ) such that limn→∞ Λ̃n(x) = −2. Hence, by applying
Theorem 4.2, the sequence x has also a unique representation x = −2 eλ + 2

∑∞
n=1(
√
n−
√
n− 1 ) eλn

in terms of the Schauder basis
(
eλ, eλ1 , e

λ
2 , · · ·

)
of the space c(∆λ).

Corollary 4.4 We have the following facts:

(1) The spaces c0(∆λ) and c(∆λ) are separable BK-spaces.

(2) The space `∞(∆λ) is a non-separable BK-space and has no a Schauder basis.

Remark 4.5 We end our work by expressing from now on that our aim of the next paper is to
determining the duals of our difference λ-sequence spaces and characterizing some matrix operators
between them.
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